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ABSTRACT in AT L with imperfect information and perfect recall{’L; )

We identify a subproblem of the model-checking problem for the [23: 5I: the AT'L formula {a)) o p can be expressed in a modal
epistemicu-calculus which is decidable. Formulas in the instances #-calculus of knowledge as

of this subproblem allow free variables within the scope of epis- vZ. \/ Ka(pA A [mg]z)

temic modalities in a restricted form that avoids embodying any aeAct, BeAct 4 g (a)

form of common knowledge. Our subproblem subsumes known
decidable fragments of epistemi¢T’'L/LT L, may express win-
ning strategies in two-player games with one player having imper- : L
fectinformation and non-observable objectives, and, with a suitable of the model-checking problem fotT'L into instances of the model-

encoding, decidable instances of the model-checking problem for €¢King problems for the epistemiecalculus is also possible but
ATL;n ’ requires the modification of the models.

Our aim in this paper is to identify a larger and decidable class
of instances of the model-checking problem for the epistemic

And there are variants aiT'L;r for which the model-checking
problem is decidable [10]. Note that a translation of each instance

1. INTRODUCTION calculus. The fragment we propose here allows an epistemic modal-
The epistemiq:-calculus is an enrichment of thecalculus on 1ty K. to be applied to a non-closgdcalculus formulap, butin -~
trees with individual epistemic modalities, (and its dual, de- such away that avoids expressing properties that construct any vari-

notedP,). It is designed with the aim that, like the classical modal &nt of common knowledge for two or more agents. Roughly, the
p-calculus, it would subsume most combinations of temporal and technlcal restriction is the foIIowmg: two epistemic operators, re-
epistemic logics. The epistemjiccalculus is more expressive than ~ ferring to the knowledge of two different agentsandb, can be
linear or branching temporal epistemic logics [15, 24], proposi- applled.to non-closgd parts ofaformulg only if the two agents have
tional dynamic epistemic logics [25], or the alternating epistemic compatibleobservations in the systef in the sense that the ob-
p-calculus [6]. On the other hand, some gaps in its expressive servab!l!ty relatllon of one of the agents is a rgflnement of the ob-
power seem to exist, as witnessed by recent observations in [6] servability relgtlon of the_ other. Similar restrictions ha_1ve been pro-
showing that formulas liké(a)p:Up2 are not expressible in the posed for various combinations of temporal epistemic logics [12],
Alternating Epistemigq:-calculus This expressivity gap can be re-  Of for the synthesis problem in distributed environments [18, 27,

produced in the epistemje-calculus, though the epistemjiccal- 13]. The variant presented here relies ocoacretesemantics, in
culus is richer than the alternatipgcalculus. the sense of [9], with the observability relation for each agent
The model-checking problem for epistemiecalculus is unde- being identified, in the given systei, by a subsell, of atomic

cidable in the presence of a semantics with perfect recall, as it is Propositions. We require this in order to syntactically define our
more expressive than combinations of temporal epistemic logics decidable subproblem: the compatibility of two observability rela-
that include the common knowledge operator. A rather straightfor- ti0nS~a and~ is specified by imposing that eithéf, < II, or
ward fragment of the epistemje-calculus which has a decidable ~Vice-versa. . .
model-checking problem is the one in which knowledge modali- ~ The epistemig.-calculus with perfect recall has a history-based
ties apply only to closed formulas, that is, formulas in which all Semantics: for each finite transition systdmthe formulas of the
second-order variables are bound by some fixpoint operator. The€Pistemicy-calculus must be interpreted over tiree unfolding
decidability of this fragment follows from recent results on the de- Of 7'- This makes it closer with the tree interpretations of the
cidability of the emptiness problem for two player games [7]. calculu§ from [11]. For.th.e c!gssmglcalculus, there are two ways
However more expressive fragments having a decidable model- Of Proving that the satisfiability and the model-checking problem
checking problem seem to exist. For example, winning strategies f(.)r.the tree interpretation of the logic are decidable: elthgr by pro-
in two-player games in which one player has imperfect informa- Viding translations to parity games, or by means of a Finite Model
tion and non-observable winning conditions can be encoded as fix- | heorem which ensures that a formula has a tree interpretation iff it
point formulas in the epistemig-calculus, but not in the above- has astate-basemtgrpretathn over a finite transition system (thl;
mentioned restricted fragment. The same holds for some formulasiS known to be equivalent with memoryless determinacy for parity
games, see e.g. [4]).
*Work partially supported by the ANR research project The generalization of the automata approach does not seem to

“EQINOCS” no. ANR-11-BS02-0004 be possible for epistemip-calculus, mainly due to the absence
of an appropriate generalization of tree automata equivalent with

TARK 2013, Chennai, India. the episte_migu-calculus. _ S_o we take the approach of providing

Copyright 2013 by the authors. a generalization of the Finite Model Theorem for our fragment of
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the epistemiq:-calculus. This result says roughly that the tree in-
terpretation of a formula over the tree unfolding of a given finite
transition systenT” which contains the epistemic operatdts or

P, is exactly the “tree unfolding” of the finitary interpretation of
the formula in a second transition syst@th which is obtained by
determinizing the projection df’ onto the observations of agent
a, a construction that is common for decidable fragments of tem-
poral epistemic logics. Our contribution consists in showing that
this construction can be applied for all instances in our model-
checking subproblem. The proof is given in terms of commutative

3. THE x-CALCULUS OF KNOWLEDGE

Syntax: The syntax of theepistemic u-calculus is based on
the following sets of symbols: a finite set afentsAg, a family
of sets ofatomic propositiongI1,)qca4 for which we denotdl =
Uaeay 1o and a set ofixpoint variablesz = {7, Z», ... }.

The grammar for the formulas of the epistemicalculus is:

pu=plonp|-p|AXp| Ko | pZ.

wherep € I1, a € Ag andZ € Z, and with the usual restriction that
an operatopsZ may be applied on formulas in which the variable

diagramms between boolean algebraic operators that are the inter-, | .o only positive occurrences.

pretations of non-closed formulas.

The model checking subproblem is non-elementary hard due to
the non-elementary hardness of the model-checking problem for

the linear temporal logic of knowledge [26]. In the full version of
this paper [3], we provide a self-contained proof of this result, by

a reduction of the emptiness problem for star-free regular expres-

sions.

The rest of the paper is divided as follows: in the next section we
recall the semantics of the-calculus and adapt it to our epistemic
extension, both for the tree interpretation and the finitary interpre-
tation. We then give, in the third section, our weak variant of the
Finite Model Theorem for the classigaicalculus. The fourth sec-
tion serves for introducing our fragment of the epistepticalculus
and for proving the decidability of its model-checking problem. We
end with a section with conclusions and comments.

An extended version of this paper with proofs is available as [3].

2. PRELIMINARIES

We start by fixing a series of notions and notations used in the

rest of the paper.

A* denotes the set of words ovér The length ofa € A", is
denoteda| and the prefix ofx up to position: is denotedx[1..7].
Hence,«[1..0] = ¢ is the empty word. The prefix ordering oti
is denotedk (< for the strict prefix ordering).

Given a setd and an integen € N, an A-tree of outdegre& n
is a partial functiont : [1...n]" — A whose support, denoted

Formulas of the typ&, ¢ are read aagenta knows thatp holds
uZ is theleast fixpointoperator, whileAX is the usuahexttime
operator from CTL, universally quantified over the successors of
the current state.

Several derived operators can be defined as usual:

1. The dual ofAX is denotedEX and defined a¥#X¢ =
~AX .

2. The dual ofK, is denotedP, and defined a®, ¢ = ~K,-¢.
P, ¢ reads aggenta considers that is possible

. The greatest fixpoint operator is denoted and defined as
vZ.¢ = ~uZ.~¢|Z]-Z], wherep[Z/-Z] is the result of
the syntactic substitution of each occurrenceZofvith —Z

in ¢.

As usual, for a subset of agentsc Ag we may denoteZ4 the
“everybody knows” operatoZ a¢ = A ges Ka .

Since our model checking construction relies heavily on formu-
las being interpreted as monotone mappings and, on the other side,
set complementation (which is the usual interpretation of negation)
is not a monotone operator we will prefer the following synitax
positive formfor the epistemig:-calculus:

pu=pl-p|Zlorpleve| AXp|EXp|
Kad| Pag | pZ.p|vZ.o

supp(t), is a prefix-closed subset of the finite sequences of integers It is easy to see that each formula of the epistemizalculus can

in[1...n]. A nodeof ¢ is an element of its support. pathin ¢ is
a pair(x, p) consisting of a node and the sequence oflabels of
all the nodes which are prefixesof p = (t(z[1... i]))0<i<|w‘.
Boolean operators:Given a setd, abooleanA-operatoris a map-
ping f: (2*)" - 2.

For anA-operatorf : (24)" — 24, atuple of sets ..., B, <

A and somé: < n we denotef, (B, ..., Br-1,9, Bi1,...,Bn):
24 - 24 the A-operator with
fk(Bl, P 7Bk—1,.7 Bk+17 e 7.Bn)(.B)

= f(Bu,..

Note that whery is monotone (B, . .
is monotone too.

Following the Knaster-Tarski theorem, any monotaheperator
f:24 - 2% has a unique least and greatest fixpoint, dentited
resp.gfp,. We may then define twal-operators|fp’ : (2*)" —
2% andgfph : (2*)" - 2%, respectively as:

., Bi-1, B, Bisr, ..., Bn)
., Bk-1,9,Bs1,...,Bn)

k
|fpf(B1, < Br) = lfpfk<Bl7<~¢Bk—1v.7Bk+lv<~an)

k
gfps(B1,. s Bn) = 8P (5B 1 souBrir s Bn)

Note that both thesd-operators are constant in théith argu-
ment. It is well-known that both operators are monotong i
monotone.
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be transformed into a formula in positive form, by pushing nega-
tions through the operators and using the definitions of the dual
operators.

The fragment of the epistemiccalculus which does not involve
the knowledge operatdk, (orits dualP,) is called here thelain
p-calculus,or simply theu-calculus, when there’s no risk of con-
fusion. As usual, we say that a formupds closedif each variable
Z in ¢ occurs in the scope of a fixpoint operator for

We will also briefly consider in this paper tmeodal epistemic
p-calculus for the sake of comparison with other combinations
of temporal and epistemic logics. The language of this variant of
the epistemiqu-calculus is based on a family of sdtdcta)acag,
meant to represent actions available to each agent at a given state.
Its grammar is the following:

pu=plenp|-pl{a)e| Kap | pZ.p

wherep € 11, a € Ag, o € X,ea, Acta and Z ¢ Z, and bear-
ing the same restriction on the utilization of the fixpoint operators.
Formulas of the typéa)y read ashere exists am-successor of
the current state in whicly holds The dual of the/«) operator is
denoted a].

3.1 Semantics

The tree semanticsof the epistemiqu-calculus is given in terms
of 2'"“Z-trees endowed with a family of relatiorfs o )ac., With



~aC supp(t) x supp(t). The nodes of the tree represent instant
descriptions of the system state, while the relatigrmodels the
indistinguishabilityrelation which disallows agent to tell apart
two behaviors of the system.

Formaly, given a tree¢ and the family of relationg~,)acagy,
each formulap which contains variablegs, ..., Z, is associated
with a supp(t)-operator|¢| : (2°))" - 22P*(") defined by
structural induction, as follows:

e The atomp is interpreted as the constasupp(t)-operator
Ip| = (224P()"™ — 22°*(") defined as follows:

IpI(Sy,..., Sn) = {z esupp(t) [ p e m(t(x))}

e The semantics of the boolean operators is classical:

|=¢] = supp(t) \ 9]
Ipr A @2l = [ d1] 02|
e Each variableZ; ¢ Z is interpreted as théth projection
on (22°*(0)" that is, as the operatdiZ;| : (2**)" -
2°uPP(®) with

1 Z:||(S1,...,8n) =Si,VS1,...,Sn Csupp(t)

e The nexttime operatad X is mapped to aupp(t)-operator,
denotedAX : 2WPP() _, 93uPP(Y) guch that for eacl$ <
supp(1),

AX(S) ={z esupp(t) | VieNif zi e supp(t) thenzi e S}

Then the semantics of formulas of the tyd& ¢ is defined
as:

|AXe] = AX o |¢]

e Each epistemic operatdi, is mapped to &upp(t)-ope-
rator denotedk, : 2°UPP(Y) . 2uPP() " sych that for each
S < supp(t),

Ko(S) ={z esupp(t) | Yy € supp(t), if z ~, y theny e S}
Then the semantics of formulas of the tyfg ¢ is defined
as:
[Kad] = Ka o |9
e The fixpoint operators are interpreted as usual:
|uZ:.¢|l = i)y

We denotd = ¢ iff € € ||¢].

The semantics of the epistemiecalculus can be also described
without set complementation, by keeping the definition of negation
only for atomic formulas, and appending the following definitions:

I=p[(S1,...,Sn) = {x e supp(t) | p ¢ w(t(x))}
EX(S) = {z esupp(t) | i e Nwith zi e supp(¢) andzi € S}
|EX¢| = EX e[|
P,(S) = {z e supp(t) | Iy € supp(t) with z ~, y andy € S}
|Pag] = Paolél
lvZ;.¢| = gfpﬂw

Note that, this way, all operators are interpreted as monaigsgt)-
operators, which is more convenient for manipulating fixpoints.
As we are interested in the model-checking problem, we will

p-calculus. These finitely-generated models occur as unfoldings of
multi-agent systemsvhose definition is recalled here.

A multi-agent systemis a tupleM = (Q,Ag,d, qo, 11, (14 ) aeag,
71') with Ag being the set of agent§) the set of stategy the initial
state of the systend, ¢ @Q x @, II the set ofatomic propositions
7 : Q — 2" is thestate labelingand for alla € Ag, II, ¢ II is the
set of atom®bservable bygenta. A run in the systend/ is an in-
finite sequence of stat@s= goq1g2... such thalg;, g;+1) € é for all
1 > 0. The set of finite runs id/ is denotedRuns(M ). Through-
out this paper we consider only finite systems, Witk {1,...,n}
andqo = 1, and we assume thé} contains only reachable states.

The Q-tree representing thenfolding of a multi-agent system
M is denoted ), and defined by

supp(tar) = {z e N* | 1z € Runs(M)} andt s () = x[|z|]

The actual tree that can be used as a model of the episiecat
culus ism(tar) = o tasr : supp(tar) — 2. We denote this tree as
7Tt]w.

The family of indistinguishability relationg~,)qca4 that we
consider in this paper are defined as follows: for any two positions
x,y € supp(tar) With |z| = |y|, we denoter ~, y if for any n < |z|
we have that

m(t(z[1..n])) N 1L, = 7(¢(y[1..n])) N ILa

This way, the indistinguishability relation, models the fact that
agenta has perfect knowledge of the absolute time and remembers
all his past observations — that is, is asynchronous and perfect
recall indistinguishability.

Definition 1. The model-checking problemfor the epistemic
p-calculus is the problem of deciding, given a multi-agent system
M and a closed formula, whetherrt ;s = ¢.

The undecidability of the model-checking problem for combi-
nations of temporal and epistemic logics based on a synchronous
and perfect recall semantics and containing the common knowl-
edge operator [26, 25], together with the connections between the
epistemicu-calculus and such temporal epistemic logics that are
explored in the next section, imply the following result:

THEOREM 1. The model-checking problem for the epistemic
calculus is undecidable.

The semantics of thenodal epistemic u-calculus is a slight
variation of the above semantics, in that we utilize a different type
of trees, as mappings N — 21V% x Xaeaq Acta. We decompose
such a tree as = (t"°%¢,t°¥°): the tree ofnodesis t™%(z) =

#(2)) . » While the tree oteolgesjstedge(:c)zt(:c)|X oy - The
aeAg ACla

only item that changes in the above list of semantic rules for opera-
tors is that we replace the definition of the nextttime operator with
the following definition of the a boolean operafar) : 2“PP(*) —

25uPP(): for eachS ¢ supp(t),
(a)(S) = {z e supp(t) | Ii € N with zi € supp(¢t) andzi € S}

A family of indistinguishability relations in such a tree model for
the modal epistemig--calculus is, like in the non-modal case, a
family of relations(~q )qcag With ~,< supp(t) x supp(t).

Then, finite presentations of tree models for the modal epistemic
p-calculus arenulti-agent systems with transition labglghich are
tuplesM = (Q, Ag, (Acta)aeag, 0,90, 11, (Tla)aeag, ™) With § <
Q xXqeaq Acto xQ and all the other components bearing the same
name and definition as in (plain) multi-agent systems.

The tree representing thenfolding of M, denotedt,, also, is

only work with finitely-generated trees as models for the epistemic defined inductively as follows:
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e £ ¢ supp(tar) andt™(e) = qo; t°49°(¢) is left uncon- However, for the decidable case of coalitions based on distributed

strained. knowledge [10], a translation exists for each instance of the model-
checking problem. We provide here this translation for simple
o If z e supp(tar) andt™**(x) = ¢, then for each stateand reachability formulas: given adT L; g formulag = {(a)p1Udp2, a
tuple of actionsxy € X, 44 Acta, for whichq % r e, there multi-agent systend/ and a finite rurp in M, the instance of the
exists a succesor afdenotedri, o, andt(zi, ) = (7“7 a)_ model-checking problemV/, p & ¢ can be translated to an instance

of the model-checking problem in the epistemic mogdalalculus
e All successors of a nodeare obtained by the previous rule.  of the following formula:

The family of indistinguishability relations is defined in a slightly é= wZ. \/ K, (p2 V pastp, V (p1 AN [aﬂ]Z)) Q)
different way for unfoldings of transition-labeled multi-agent sys- acActq BeAct 4g\{a}
tems, as agents may know their own past actions. Formally, for two
nodesz, y € supp(tar) and an agent € Ag we putz ~, y if for
anyn < |z| we have that

and themodifiedsystema/’, in which the new atomic proposition
pasty, labels all the states occurrirdter a state carrying a2 and
lying on runs which exteng. This mechanism is similar with the

A ("% (2[1.n])) N Ia = ("% (y[1..n])) N 1L, “bookkee.ping” employed in the two-player games utilized in [;LO]
o doe for checking whether the same formuldnolds at a state of a multi-
e (50[1«-”])|a =t (y[l«-n])L agent system.

. ) . Formally, given a multi-agent system
The modal epistemig-calculus can be translated into the (non- M = (Q, Ag, 6, 40,11, (I1a )aeng, 7, (Acta Jacay ), We build the sys-
- ’ Yy ’ ) a jaeAg, 'ty a)acAg )y

modal) epistemig:-calculus by converting each action name € ’ , P / 7 : -
. . e - . temM' = ,Ag, o', q0, 11, (I, ;7 (Act in which:
Act, into an atomic proposition, so the main results of this paper (Q',49,", 0, T, (Tla)acag, ™, (Acta)aeag)

generalize easily to this calculus. e Q'=Q x{0,1} andgj = (go, 0).
3.2 Comparison with other temporal epistemic o 7'(q,0) =7(q), 7'(q,1) = m(q) U {pastp, }.
framewprks ] ) ) ) o Acty, = Acta, x {0,1} and Act;, = Act,, for all b # ao.
In this subsection we discuss the relationship between the epis-
temicu-calculus and other temporal epistemic logics or game mod- o, )

e For any transitiory B with o e Actao @ands = (By)bzags

els with imperfect information and perfect recall. we put iné’ the following transitions:

First, it is easy to see that the epistemicalculus is more ex-
pressive than linear or branching temporal epistemic logics with

common knowledge operators [15]. This was already noted e.g. - (¢ O) ( ,0)
in [24], since the following fixpoint formula defines the common ~(q 1) (T 1), z € {0,1}
knowledge operator for two agentS, »¢ = vZ.(PAKo ZAKL Z). ’

Secondly, the (modal variant of the) epistemicalculus is more - (q 0) (T 1) if p2 e m(q)
expressive than the alternating epistemicalculus of [6], due
to the possibility to insert knowledge operators “in between” the - (q 0) (r 0) if p2 ¢ m(q)

quantifiers that occur in the semantics of the coalition operators.
More precisely, for any instance of the model-checking problem
for the alternating epistemie-calculus, letAct 4, denote, for each
set of agentsd c Ag, the cartesian product of the set of action

Note that, given a node € supp(t /), if we replace, on the path
from the root tox, all actions of the typ&«,0) with o, we get a
run int,s corresponding with a note of;. We denote this corre-

symbols for each agent i, Acta = X .4 Actq. Then: sponding node as|M. Furthermore, for each nodee supp(tar),
we denoter 1™’ the node irsupp(tas ) with (z1)| = z and
(Ayxe=V (Ko A [oB]0) ) 1 upp(tar) (z1 )|M x an
aeAct 4 BeActagna having the property that on the path from the root gf to x 1
AlX b = P, a, a’s actions are only of the typéx, 1).
[Alxe aeﬁm ( BEAC\/AQ\A[ B]d)) The following proposition gives the connection between the in-

stances of the model-checking problemiihand M
Recall briefly that thestrategy operatoK A )¢ says that the agents

in the group (coalition)4 have astrategyensuring that, whatever PROPOSITION 2. For each nodex in the treety, z = ¢ =
the other agents do, the objectigeis achieved on each resulting  {ao )p1Up- if and only ifxTM'n: &, with ¢ defined as follows:
run. Also the strategy must be based on the observability of each _

agent of the system state. See [5] for arecent account on alternating ¢ = pZ. \/ Ka, (pz V pasty, V (p1 AN [a,B]Z))
temporal logics. acdctag Bedctag\fag}

The relationship withAT L, r is more involved, as we detail in
the sequel. Formulas of the tygel)) o p can be expressed as the
fixpoint formulavZ. \/ K.(pr A [«B]Z

acActq BeAct Ag\{a} 7

On the other hand, formulas containing the until operator cannot ¢ =nZ. aEA/}tao Pay (p2 v pastp, v (p1 ABEAMY\{G 50"5)2))
be translated into the epistemiecalculus. The reason is explained e
in [6]: in formulas of the typ&(a)) < p the objectivep might not be The problem ofolving multi-player games with imperfect infor-
observable by the agent who might only be able to know, in the  mationcan also be translated into the epistemicalculus. Recall
future of some given time instant, that sometimes in the past of that that a (synchronous) two-player game is a tuple
future moment (but after the reference instant), the objective was
achieved on all identically observable traces. G= (Q, Acto, Act1, 6, Qo, Obso, Obst, 0o, 01717@7’)

The same property holds far = [aoJp1Up2 (Which reads “agent
ao cannot avoidp1Up2") and
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where:
AXT(S)={qeQ|VreQif (q,r)cdthenr e S}
EX'(S)={qeQ]|3reQwith (¢,r) e s andr e S}

with Q denoting the set of statedcto (respAct:) denoting the set

of actions available to player O (resp. playerd)s Q x Acto x

Act; x @ denoting the transition relatio®bso, resp.Obs, denot-

ing finite sets of observations available to agent 0 (resp. agent 1),
0o : Q@ — Obsg, resp.o1 : Q@ — Obsy denoting the observability
relation for each player angur : Q — N defining thepriority of
each state.

A player: (i € {0,1}) plays by choosing #&asible strategy
which is a mappingr : (Obs;)* — Act;. A strategy fori is win-
ning when each runs that is compatible with that strategy satisfies
the property that the maximal priority of a state which occurs in-
finitely often in the run is even. The winning condition might be
non-observable to player as there might exist states, g2 € Q
that are identically observable by playgri.e. 0;(q1) = 0i(g2),
might have different priorities.

The set of winning strategies for a player in a multi-player game
with imperfect information is then expressible within the epistemic
p-calculus, similarly to the encoding of the set of winning strategies
in a parity game into th@-calculus from e.g. [11, 22]. Assuming
that the largest priority id) is even and the atomic propositipi
holds exactly in all states with priority, the following epistemic
modalp-calculus formula encodes the winning strategies for player

e Each pair of epistemic operatoks, / P, is associated with a
pair of Q-operatorsk’y , PS : 29 — 29 such that:
[Padplar = P o [9]
[Kad|ar = K 0[]
where:
KJ(S)=Tu(S) ={qc Q| Vs € Q, if (s,q) € T thens ¢ S}
PI(8)=Ta(S)={qgeQ|IseSst(s,q)ela}

o [puZid\n = |fpf¢]M and[vZ;.¢|n = gfpf(ﬂM-

In the sequel, when the multi-agent systérh is fixed, we will
utilize the notatior ¢ instead off ] s.

The following result, giving the connection between the tree se-
) mantics and the state-based semantics foptealculus, contains

b the essence of the Finite Model Theoremetalculus. The result

\V K.V (pk AN [a,ﬂ]Zk) is proved by structural induction on the formuyfan [3]:

acAct; k<n BeActy_;

VL1 ... 021

THEOREM 3. Given amulti-agent systeM = (Q, Ag, 9, qo, 11,
(ITa)aeag, ) inwhich@ = {1,...,n} andgo = 1, and a (plain)
u-calculus formulag, the following diagrarh commutes:

provided that playei’s indistinguishability in the multi-agent sys-
tem constructed front is based orObs;.

3.3 Reuvisiting the decidability of the model ovn  [9] o
checking problem for the tree semantics (2%) ————2
of the plain x-calculus 1 o
. ) . . . (tar) tu 2
In this subsection we provide a variant of the Finite Model The-

n H(va 2supp(t1w)

orem for theu-calculus, which will serve as a basis for our search
of a decidable subproblem of the model-checking problem for the
epistemicu-calculus.

Given amulti-agent systef = (Q, Ag, d, go, I, (I1a ) aeag, 7),
and an ageni € Ag, we define the relatioR?! ¢ Q xQ as follows:
(g,r) e "X if for any runp in M ending ing (i.e. p[|o|] = ¢) there
exists a rurp’ ending inr with p ~, p’.

We now define a second semantics for the epistemdalcu-
lus, which works on theset of state®f a multi-agent systemi/,

(QSUPP(tM))

We also say that the diagram 2 holds (or commutes) for the formula
¢ in the system\/.

The commutativity of diagram 2 is based on some commutativity
properties for the tree operators and the state operators associated
with all the logical operators of the-calculus. For instance, the
AX operator satisfies the following commutativity property:

necessary for the decision problem. This semantics is the extension 9@ AX7 9@

of the state-based semantics for fhealculus [21] by defining a

state-based semantics for the epistemic operators. (tar)" l ltzx} 3
Formally, each formula which contains variableg, ..., Z, is AX

associated with &-operator{¢]as : (29)" — 29, again by struc- gsupp(tar) gsupp(tar)

tural induction (we provide here the semantics for the epistemic

u-calculus in positive form): Our search will be directed towards finding particular instances

of the model-checking problem where similar commutative dia-

e [p]a resp.[-p]as are the constar@-operators

[P]a(S1,...,8:) ={qe Q| pen(q)}
[“p]]&{(sh cee 7S7l) = {q € Q | p ¢ W(q)}
o [Zila : (29)" - 29 is thei-th projectionQ-operator, i.e.

givenSh... ,Sn c Q, [Zi1A1(S17... ,Sn) =5;.

. %11\/ d2]m = [P1]m U [P2]ar, and[d1 A 2] = [P1]m N

e Both nexttime modalities are associated wifhoperators
AX! EX7 29 5 29 such that:

[AXlw = AXT o[¢],  [EXlu = EX o[¢]
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grams can be provided for the epistemic operators involved in the
given epistemig:-calculus formula.

4. A FRAGMENT OF THE EPISTEMIC
p-CALCULUS WITH A DECIDABLE
MODEL CHECKING PROBLEM

In this section, we first introduce some additional notations and
notions. Given a multi-agent systei and two agents, a2 €
Ag, we say that the two agenisve compatible observabilityif
eitherIl,, cIl,, or g, 2 Iq,.

The category in which this diagram holdsSst, the category of
sets.



Given a formulag, let T, denote the syntactic tree g¢f The
following fixes the definition ofl, by structural induction, as it
will be needed in the rest of the proof. Note that, in our definition of
Ty, each node labeled withvariable also has successqrabeled
with T. This convention brings the property that each nod&jn
whose formula is a variable has a closed subformula (which:is

e supp(7}) = {€}, Tp(e) = p,
o supp(T-p) = {e}, T-p(€) = -p,
o supp(Tz) ={e,1},Tz(e) =Z,Tz(1) =T,

* supp(Tope,) = {e} {1z | z € supp(Ts,)}, Tops, (€) =
Op, Tops, (1z) =Ty, (z), whereOp € {AX,EX, Kq, Pa,
wZ,vZ}

* supp(Ts,0p0,) = {e} U{lz | z € supp(Ty,)} U {2z |z ¢
supp(T¢2)}, Tp10p02(€) = Op, Ty 0p0s (17) = Ty, (),
Tpy0pes(27) = Ty, (x), Op € {A7 V}'

We then denotgorm(x) the subformula of whose syntactic tree
is Ty |z i.e. the subtree df’; rooted atr, and say that is closed
if form(x) is closed.

We then say that an epistemic operafgr € { K., P, | a € Ag}
is non-closedat a noder in a formulag if form(z) is not closed,
Op labels a nodey > z and for all the nodeg’ lying on the path
betweenr andy we have thaiform(y’) is not closed.

For each node € supp(T), we also definelg NCliy4(x) as the
set of agents for which K, or P, is not closed at. In addition,
given two distinct nodes; < x2 with 22 being closed, we say that
x2 IS anearest closed successof x; if no other closed node lies
on the path fromx; to z».

Definition 2. A formula ¢ is said tomix observations of agents
a and b (or also: agents, b havemixed observationsin ¢) if the
following property holds

For some epistemic operata®, € {Kq, P.}, Opy €
{Ky, Py} there exists a node of Ty such that both
Op. andOp,, are not closed at.

Thenon-mixing model-checking problemfor the epistemig.-
calculus is the problem of deciding whethar = ¢ for a given
multi-agent systend/ and a closed formula bearing the restric-
tion that any two agents, b which have mixed observations i
have compatible observability it/ .

All instances of the model-checking problem B, [15, 16],
that is,CT L with individual knowledge operators, are formulas of
the p-calculus of non-mixing epistemic fixpoints. Other instances
of this model-checking problem consist of the following formulas

/LZl.(pV Ka(EX.Zl) A VZQ.(q/\ Zl A KG(EXZQ)))
/J,Z1.(p\/ KG(EX.Zl) AN I/ZQ.(q/\Kb(EXZQ)))

in pair with systems\/ in which I, < II,. Also any instance of
the model-checking problem for the following common knowledge
formula:

Contd =vZ(¢NKoZ v Kb Z)

and with systemd/ in which a andb do not have compatible ob-
servability, is not an instance of the non-mixing model-checking
problem.

THEOREM 4. The non-mixing model-checking problem for the
epistemicqu-calculus is decidable.
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The crux of the proof relies on a commutativity property relat-
ing 5+ with the operatord<,/K;, resp. P,/P;, similar with the
properties relating,; with AX/A X in diagram 3. Unfortunately,
such a commutativity property does not hold 6y, in any multi-
agent systend/, as is shown in the following example.

3,01 (L\

&

2p1

Figure 1: A one-agent system with1, = {p1}.

ExamMpPLE 5. For the one-agent system in Fig. 1 we have that
tar (KI({1,3))) # Ka(ta1({1,3})), as

tar (KL ({1,3}))) = {z e supp(tar) | 2[z]] = 1}

Ka(tar({1,3})) = {z e supp(tn) | z[|a]] = 1v
(z[|z]] = 3 A |z| is odd)}.

Definition 3. Given two multi-agent systems; = (Q, Ag, 6,
46, T1, (T1a) geag, i) (3 = 1,2) over the same set of atomic propo-
sitions, we say thab/; is anin-splitting of M- if there exists a
surjective mapping withy : Q1 — Q2, satisfying the following
properties:

1. For eachy,r € Qu, if (¢,r) € 61 then(x(q),x(r)) € 2.
Moreover, for any(q’,r") € & there exist(¢,r) € §1 such

thatx(q) = ¢, x(r) =7".
2. Foreachy € Q1, m2(x(q)) = m1(q).

3. For eachy € Q1, outdeg(x(q)) = outdeg(q), where
outdeg(q) is the number of transitions leavirg

4. x(¢5) = 5.

The in-splitting is aisomorphismwhenevery is a bijection.

We will call the mappingy as anin-splitting mapping Also, we

write x : M, Ins, M- to denote the fact that is a witness for\/;
being an in-splitting of\/>.

Note that an in-splitting mapping (term borrowed from symbolic
dynamics [19]) represents a surjective functional bisimulation be-
tween two transition systems. The following proposition can be
seen as a generalization of this remark (the proof is given in [3]):

PROPOSITION 6. Consider two multi-agent systemhs = (Q;,
Ag,6i,q0,11, (I1a)aeag, ™) (¢ = 1,2) over the same set of atoms,

connected by an in-splitting mapping: M Ins, M. Then for
any plainu-calculus formulap the following diagram commutes:

(QQI)" [QS]]VII 2Q1

o] Ix-l @

(2Q2 )" [¢]a1, 9Q2

REMARK 7. Proposition 6 does not hold for any episterpic
calculus formula. To see this, consider the system depicted in Fig. 2,
which is an in-splitting of the system from Fig. 1, obtained by split-
ting state3 in Fig. 1 in two states, denotetland 4 in Fig. 2, (i.e.
x(1) = 1,x(2) = 2,x(3) = x(4) = 3) with transitions(3,4) € ¢
and(4,4) €4.



Figure 2: An in-splitting of the system from Fig. 1.

Note that we have
[Kt{X]Mz ({17 2, 3}) = {17 3}
(KX ({1,2,3)) = {1,2,3}
and hencd K X \ar, ox " # x " o [K{ X ns,.
The following notion corresponds with the “subset construction”

used for model-checking LTLK/CTLK [26, 8] or solving 2-player
parity games with one player having incomplete information [7]:

Definition 4. Given a multi-agent systed/ = (Q, Ag, 9, go, 11,
(14 )aeag, 7), we define the multi-agent system
Agre(M) = (Qpre7 Ag> 57 q~07 H7 (Ha)aeAm 7})
as follows:
o« QP = {(5,9)|5€Q,5c{qeQ]|ma(q) =ma(s)}}and
do = (g0, {qo})-
e 4 is composed of all tuples of the for(iis, S), (r, R)) where
(s,r) e dandR = {r' € Q | mo(r') = ma(r) and3s’ ¢
S with (s',7") € §}.
o 7(s,5) =m(S) =mn(s).

The a-distinction of M, denotedA.(M), is the restriction of
AP"(M) to reachable states, i.e.,

AG(M) = (Q:Ag7g |Q,(jO,H, (Ha)angvﬁ— |Q)
whereQ = {5 € QP | 5 is reachable frongo }.

Given a multi-agent systed? = (Q, Ag, 9, qo,II, (I1a)aecag, 7),
and an agent ¢ Ag, we say thatM is a-distinguished if T
(relation defined on page 5) isc@ngruence relation that is, an
equivalence relation with the following property:

foranyq,r € Q, if (¢,7) €T, (q,q') €6, (r,7') € § and

Ta(q) = ma(r"), then(q',r") e To". (5)

We utilize from now on the notatiohi, whenever the systed/ is
understood from the context.

PropPOSITION 8. 1. Forany multi-agent systeM, A, (M)
is an in-splitting ofM. We denote this in-splitting aS;}M :
Aq.(M) - M. Whenever the systeM is clear from the
context, we use the notatiak," instead ofA "),

2. For any agenta ¢ Ag we have thatA,(M) is a-distin-
guished.

PrROPOSITION 9. For any multi-agent systefif and two agents
a,b € Ag with I, c II,, if M is b-distinguished, thed\, (M) is
b-distinguished too.

PrRopPosITION 10. For any multi-agent system/, the follow-
ing diagram commutes iff/ is a-distinguished:

f
2Q Ka 2Q
tar l lm1 (6)
QSUPP(tM) Ka 2SUPP(75M)

The same holds if the paik, /K is replaced withP, /P; .
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Definition 5. We say that the pair of epistemic operataT§/Kj,
resp. Pa/Pf, commutes for M if the diagram 6 is commutative
for the respective pair.

Proposition 10 gives the first restricted form which ensures the
commutativity of diagram 2 for formulas of the epistemicalcu-

lus. The second restricted form in which the pEﬁg/Kg (resp.
P,/P{) commutes for a system is stated as point 2 in the next
proposition:

PROPOSITION 11. Consider two multi-agent systems = (Q:,
A976i7q67n7(na)a5A977ri) with Q; = {17 7n’i}! (@ = 1,2),
related by an in-splittingy : M; Ins, M-, and define the tree

mappingx : supp(tar,) — supp(tas, ), wherex(e) = e and
x(xi) = x(z) - x(2), for anyz € supp(tar, ) andi € Q1. Then the
following properties hold:

1. x is atree isomorphism betweesy, and¢as, andéar, ox =
X ot -

2. For any closed formulap of the epistemiq:-calculus for
which the diagram 2 commutes in the systkfy, the fol-
lowing property holds:

Ip)az, = tar, (X" ([#]012))

REMARK 12. The previous proposition tells us that, fdpsed
formulas of the epistemig-calculus for which diagram 2 com-
mutes inM-, in the eventuality that the systei- needs to be
replaced with a “larger” system\/; (for reasons related with the
“subset construction” that ensures the first type of commutativity of
K./ P.), the validity of¢ on the tree 5,, can be recovered from the
set of stateg ™' ([¢]az, ), through the inverse tree mapping, .

We have now the essential ingredients that ensure the decid-
ability of the model-checking problem for thecalculus of non-
mixing epistemic fixpoints. The algorithm runs as follows: we pro-
ceed by constructing th@-operator interpretations of the subfor-
mulas of¢ on the given systemV/, in a bottom-up traversal of the
syntactic tred,. As long as we only treat subformulas not contain-
ing any epistemic operator, Theorem 3 ensures that these boolean
operators are correct finitary abstractions of the tree semantics of
our subformulas.

The first time we encounter ifi, an epistemic operator, say,
K,, s.t. the subformula in the current nodeAs ¢’, we need to
replaceM with its a-distinction A, (M), in order for the appro-
priate diagram to commute. This replacement is easier whés
a closed plain:-calculus formula. By combining Propositions 11
and 10, the tree semantics of the formia$’ can be computed
using the boolean operatd¢] (A;" ([¢']ar)) in Aq (M), where
AL ([¢'1n) represents the set of statesAn (M) on which ¢’
holds.

The procedure is different wheg is not closed. In this sit-
uation, we cannot determinizk/, as observed in the remark 7.
Therefore we need to descend along the syntactic tred tihe
“nearest” nodes whose formulas are closed, and only there apply
the a-distinction construction, as required by Proposition 11.

Suppose even further that itself contains other knowledge op-
erators, and some other knowledge operéafpis encountered dur-
ing this descent. The “nonmixing” assumption on our formula im-
plies that this other agehthas compatible observability with our
(K, andKj} are not closed at the node associated \&th). There-
fore, thea-distinction of the models applied at lower levels com-
mutes withK, fact which is ensured by Proposition 10 when the
two agents have compatible observability.



This whole process ends when we arrive in the root of the syn-
tactic tree, with an in-splittingl/’ of the initial systemM and a
(constant) boolean operater which gives the finitary abstraction
of the set of nodes of the treg; where¢ holds. The following
paragraphs formalize this process.

PROOF OFTHEOREM4. Given a formulap in the p-calculus
of non-mixing epistemic fixpoints and a multi-agent systemwe
associate with each nodeof T, an in-splitting mapping, denoted
Té”s(m), such that the following properties hold:

1. For the root we haverf”S(e) = idys. Also for any non-

closed noder in supp(T;), we have thatl}"*(z) = idar,
whereM’ is an in-splitting of M.

. For anyz,zi € supp(Ty),i € {1,2}, codom(T;"*(x)) =
dom(TénS(:ci)),

. For any nodes1, z2 € supp(Ty) With z1 < x2, define first
thein-splitting mappingoetweenz; andz: as:

T3 (x1..22) = Ty (21) 0 ... 0 Ty (2)

Then, for any leaves, z2 in T, we have that
Ty™ (e...x1) = T4 (e...z2), wheree is the root of .

. For any noder; which is a nearest closed successor of the
roote, if AgNClg(e€) ={ax,...,ar} andIly, c... cIl,,,

Ins

thenT,™* (x1) has the form:

T (1) = Al o . o A} o, for somey,

Assuming thatFaf"“" is constructed with all the properties above,
we denotenS(T}™*) = T,™*(e...z) wherez is any leaf inT. In

the sequel, whenever we want to emphasize a property of the root

of the syntactic tred;, we denote i€?.

The construction def"“" proceeds by structural induction @n

For the base casg = p or ¢ = —p, we putT,"*(¢) = T'7*(e) =
idyr, foranyp e I1. Also for ¢ = Z, Z € Z, note that, by construc-
tion, the root of Tz has a leaf successor which is the only child
node. ThenT'2™* (¢) = T4™*(1) = idas.

For the induction case, take a formua= Op.¢” whereOp ¢
{AX,EX,uZ,vZ}, and assum@&’* (z) is defined. Thenwe put
T;)™ (1z) = T, () for any noder of supp(Z ), andZ;"* (”) =
idprr, whereM' = dom(TL™ ().

Supposep = K,¢' or ¢ = P,¢’. Note that for each nodéx
which is not closed irf%, the nodex is not closed il either.
Then we putl}™* (1) = T.,/**(x) = idp, with M’ the appropri-
ate multi-agent system. We also ﬁquns(ed)) = idn, for the ap-
propriateM. Furthermore, for each closed notte; € supp(7y)
which isnota nearest closed successoedfwe put) ™ (1z1) =
Tdf,”s(ml).

Take further a nodéx, which is a nearest closed successor of
the roote? and assumelgNCL(e?) = {au, ..., ax, }. By the above
property 4 in the induction hypothesis, the in-splitting mapping in
T isTdf,"S(:cl) = A;i 0...0A;i ox WithIl,, ... cIlg,. On
the other hand, by the assumption thds a nonmixing formulag
must have compatible observability with all the agenits. . . , a.

Therefore, there must exist sorne k such thall,, ¢ ... cIl,; €
Iy cI,,,, €... <II,,. We then define
T (1) = Agto...0 Al 0 A o ALl oL oA oy

Note that the domain and the codomain of eak:;@, (j <9 are
different in7;;™* from those ir}**, due to the insertion of\,".
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According to the above constructions foe K,¢’ of ¢ = P,¢’,
all the four properties are satisfied mj"“", the fourth one resulting
from the construction of the in-splitting mapping for the nearest
closed successors of the root.

Finally, takeg = ¢10p g2 (Op € {n,v}). If Tj™* =T}"*, put
Té"s(lx) = T(z{fs(m) for all nodesz € supp(Ty, ), Té”s(zfc) =
T(,f;”(:c) for all z € supp(T,) andef”S(e) =idp.

Suppose noW;"*  T,*. ConsidetdgNCI(1) = {a1,...,ar}
andAgNCl(2) = {b1,...,bi} withII,, ¢ ... cII,, andIl,, ¢

.. ¢ IIy,. Take then a node; which is a nearest closed successor
of the root ofT},, €', and a noder, which is a nearest closed
successor of2. By the induction hypothesis we have:

Té?s(im) = A;i o...o0 A;i ox1 InS(Té?S) = Té?s(ml) oY}
Tir*(z2) = Ap) 0.0 Ayt oxz  InS(Tyr*) = Tar®(x2) o X4

with appropriate in-splittings, X1, X2, X5.

On the other hand, by the assumptiongobeing nonmixing, for
anyi < k,j < I, the two agents; andb; must have compatible
observability. It therefore follows that there exists a reordering of

the union{as,...,ax} U {b1,...,bi} as{ci,...,cm} such that
I, € I,,, foralli <m - 1. Denote then:

XO:AZfO...OAZ;
By Proposition 9,xo is ac-distinction for anyc € {a1,...,ar} U

{b1,...,b.}. Also, by property 2 of the induction hypothesig, is
independent of the choice of the nodes x-.

The same property from the induction hypothesis also ensures
that, for any nearest closed successerof %2, there exist in-
splittingsx 522, 92”2 such that:

Té;w (52) = A;f o...0 A;ll ° Yg%fz @
InS(T3°) = 13" (%) o X5* ™ ®)

We will then construc;™*(-) as follows:

1. For each closed nodewhich is a leaf inT, but not a near-
est closed successor of', we putT;"*(1z) = T;™*(z) o
X2° Xz

. For each non-leaf, closed nodén T, which is not a near-
est closed successor &' we copyT;"*(1z) = T(jl"“"(x).

. For each nearest closed successofire?* which is not a leaf
in Ty, we putT}™* (1z) = xo 0 1.

. For each closed nodewhich is a leaf inT},, and a nearest
closed successor ef', we putT}}"*(1z) = xo © X1 © X} ©
X2 © X2

. For each closed nodewhich is not a nearest closed succes-
sor ofe”> we copyT;"*(2z) = T}*(z).

. For each closed nodewhich is a nearest closed successor
of €22 we putTi™* (2z) = xo 0 x1 0 X1 0X32"", wherexy>"”
is the in-splitting mapping associated with the nadas in
Identity 8 above.

. For the rook and the non-closed nodesof T, Tdf"“"(e) =
idpsr andT(z{”S(m) = idyr, with M' and M appropriate
multi-agent systems.

It's not difficult to see that the resulting mappiﬁd;”(-) sat-

isfies the five desired properties. More specifically, property 2
amounts to the following identity:

InS(T5™) = X0 ° X1 X1 © X2 0 X5



Now we may show hovSQ{”S can be used to build our algorithm.
Let M, denote the multi-agent system which is tt@mainof the
in-splitting T(j"“"(x), and denot&),, its state-space. Also, for con-
venience, we denot&/,, the multi-agent system which represents
the codomainof Té”s(:c), andQ, its state-space. Note that when
x,21 € supp(Ty), M, = M1, and similarlyM, = M,2 when
22 € supp(Ty).

Once we built the tre&™*, we associate with each nodén T,
aQ,-operator that will give all the information on the satisfiability
of form(z) in the given model. Formally, we build the trég""
whose domain isupp(7)~{z | T,(z) = T} and which associates
with each noder a @, -operator7;;"" () : (29=)" - 29=, The
construction will be achieved such that

| form(a)| o (tar,)" = tar, o T5" ()
for each noder with form(z) + 7.
The construction proceeds bottom-upsolpp(T¢)._We actuglly
build twotreesT;;" andT", ", such thall, " (z) : (2% )" — 29=

—=str

and T3 (2) =T, (z) o [(T;”S(x))’l]n, that is,

9)

—str

ns -1
0, 8n) =Ty (@) (T () (S1,..,5n))
(10)
Note that, once we build™, " (z) for a noder, T35 (z) is defined
by Identity 10, so we only explain the construction Tf)fr(a:).

For nodesr that are leaves ifi, with T, (z) = p € II, we put
T, () = [p]u, the constang, -operator. Recall that we do not
defineT;"" () for Ty (z) = T.

For Ty(z) = Zi € Z we putTsy (z)(Si,...,Sn) = Si, thei-th
projection on(2%=)".

For nodesz with Ty (z) = Op € {AX,EX,K,, P, | a € Ag}
we put

T3 () (Sh,-

Hstr

Ty (2)(S1,---,Sn) = Op! (T3 (21)(Sh,. .-, Sn))
ForTy(x) = A we put

—str

Ty ()(S1,...,5n) =
(T3 (21)(S1,...,8n)) n (T3 (22)(Si,- .., Sn))
and similarly forTs (x) = v, with n replaced withu in the above
formula definingT, " (z)(S1, ..., Sn).
ForTy(z) = uZ; with 1 <4 <n we put

=str

Ty (z)

and, similarly, forT(z) = vZ; we define

= Wprrser oy

—=str i
Ty (z) = gfPirsir oy

The validity of Identity 9 follows then from Propositions 10 and 11.
The final step consists in checking whethgre Tj,”(s), where

q6 is the initial state in the multi-agent systeW. associated with

the root of T,. The result of this check gives the answer to the

problem whethet = ¢ in tp;.

O

The following result follows from a similar result for LTLK &m
[26]. A self-contained proof can be found in [3]:

THEOREM 13. The model checking problem for thecalculus
of non-mixing epistemic fixpoints is hard for non-elementary time.
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5. CONCLUSIONS AND COMMENTS

We have presented a fragment of the epistemialculus hav-
ing a decidable model-checking problem. We argued in the intro-
duction that the decidability result does not seem to be achievable
using tree automata or multi-player games. Two-player games with
one player having incomplete information and with non-observable
winning conditions from [7] do not seem to be appropriate for the
whole calculus as they are only equivalent with a restricted type
of combinations of knowledge operators and fixpoints. We con-
jecture that the formulaZ(p v AX.P,Z) is not equivalent with
any (tree automaton presentation of a) two-player game with path
winning conditions. Translating this formula to a generalized tree
automaton seems to require specifying a winning condition on con-
catenations of finite paths in the tree with “jumps” between two
identically-observable positions in the tree. This conjecture extends
the non-expressivity results from [6] relatingl"L andp — AT L.

The second reason for which the above-mentioned generaliza-
tion would not work comes from results in [9] showing that the
satisfiability problem for CTL or LTL is undecidable with the con-
crete observability relation presented here. Itis then expectable that
if a class of generalized tree automata is equivalent withutoal-
culus of non-mixing epistemic fixpoints, then that class would have
an undecidable emptiness problem and only its “testing problem”
would be decidable. Therefore, the classical determinacy argument
for two-player games would not be translatable to such a class of
automata.
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