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ABSTRACT
We introduce language-based games, a generalization of psy-
chological games [6] that can also capture reference-
dependent preferences [7]. The idea is to extend the domain
of the utility function to situations, maximal consistent sets
in some language. The role of the underlying language in
this framework is thus particularly critical. Of special in-
terest are languages that can express only coarse beliefs [9].
Despite the expressive power of the approach, we show that
it can describe games in a simple, natural way. Nash equi-
librium and rationalizability are generalized to this setting;
Nash equilibrium is shown not to exist in general, while the
existence of rationalizable strategies is proved under mild
conditions.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—modal logic; I.2.11 [Artificial Intelli-
gence]: Distributed Artificial Intelligence—multiagent sys-
tems; J.4 [Social and Behavioral Sciences]: Economics

General Terms
Economics, Theory

Keywords
Psychological games, epistemic game theory, rationalizabil-
ity

1. INTRODUCTION
In a classical, normal-form game, an outcome is a tuple of

strategies, one for each player; intuitively, an outcome is just
a record of which strategy each player chose to play. Players’
preferences are formalized by utility functions defined on the
set of all such outcomes. This framework thereby hard-codes
the assumption that a player can prefer one state of the
world to another only insofar as they differ in the outcome
of the game.

Perhaps unsurprisingly, this model is too restrictive to ac-
count for a broad class of interactions that otherwise seem
well-suited to a game-theoretic analysis. For example, one
might wish to model players who feel guilt, wish to sur-
prise their opponents, or are motivated by a desire to live
up to what is expected of them. Work on psychological game
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theory, beginning with [6] and expanded in [3], is an enrich-
ment of the classical setting meant to capture these kinds
of preferences and motivations. In a similar vein, work on
reference-dependent preferences, as developed in [7], formal-
izes phenomena such as loss-aversion by augmenting players’
preferences with an additional sense of gain or loss derived
by comparing the actual outcome to what was expected.

In both of these theories, the method of generalization
takes the same basic form: the domain of the utility func-
tions is enlarged to include not only the outcomes of the
game, but also the beliefs of the players. The resulting
structure may be fairly complex; for instance, in psycho-
logical game theory, since the goal is to model preferences
that depend not only on beliefs about outcomes, but also
beliefs about beliefs, beliefs about beliefs about beliefs, and
so on, the domain of the utility functions is extended to
include infinite hierarchies of beliefs.

The model we present in this paper, though motivated
in part by a desire to capture belief-dependent preferences,
is geared towards a much more general goal. Besides be-
ing expressive enough to subsume existing systems such as
those described above, it establishes a general framework
for modeling players with richer preferences. Moreover, it is
equally capable of representing impoverished preferences, a
canonical example of which are so-called “coarse beliefs” or
“categorical thinking” [9]. More specifically, our formalism
provides good practical and theoretical tools for handling be-
liefs as discrete rather than continuous objects, an advantage
that is particularly relevant in the context of psychological
effects in games.

Despite this expressive power, the system is easy to use:
player preferences are represented in a simple and natural
manner, narrowing the divide between intuition and formal-
ism. As a preliminary illustration of some of these points,
consider the following simple example.

Example 1. A surprise proposal. Alice and Bob have been
dating for a while now, and Bob has decided that the time
is right to pop the big question. Though he is not one for
fancy proposals, he does want it to be a surprise. In fact, if
Alice expects the proposal, Bob would prefer to postpone it
entirely until such time as it might be a surprise. Otherwise,
if Alice is not expecting it, Bob’s preference is to take the
opportunity.

We might summarize this scenario by the following table
of payoffs for Bob:
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p ¬p
BA p 0 1
¬BA p 1 0

Table 1: The surprise proposal.

In this table, we denote Bob’s two strategies, proposing and
not proposing, as p and ¬p, respectively, and use BAp (re-
spectively, ¬BAp) to denote that Alice is expecting (respec-
tively, not expecting) the proposal.

Granted, whether or not Alice expects a proposal may be
more than a binary affair: she may, for example, consider
a proposal unlikely, somewhat likely, very likely, or certain.
But there is good reason to think (see [9]) that an accurate
model of her expectations stops here, with some small finite
number k of distinct “levels” of belief, rather than a contin-
uum. Table 1, for simplicity, assumes that k = 2, though
this is easily generalized to larger values.

Note that although Alice does not have a choice to make
(formally, her strategy set is a singleton), she does have be-
liefs about which strategy Bob will choose. To represent
Bob’s preference for a surprise proposal, we must incorpo-
rate Alice’s beliefs about Bob’s choice of strategy into Bob’s
utility function. In psychological game theory, this is ac-
complished by letting α ∈ [0, 1] be the probability that Alice
assigns to Bob proposing, and defining Bob’s utility function
uB in some simple way so that it is decreasing in α if Bob
chooses to propose, and increasing in α otherwise:1

uB(x, α) =

{
1− α if x = p
α if x = ¬p.

The function uB agrees with the table at its extreme points
if we identify BAp with α = 1 and ¬BAp with α = 0. Other-
wise, for the infinity of other values that α may take between
0 and 1, uB yields a linear combination of the appropriate
extreme points. Thus, in a sense, uB is a continuous ap-
proximation to a scenario that is essentially discrete.

We view Table 1 as defining Bob’s utility. To coax an ac-
tual utility function from this table, let the variable S denote
a situation, which for the time being we can conceptualize
as a collection of statements about the game; in this case,
these include whether or not Bob is proposing, and whether
or not Alice believes he is proposing. We then define

uB(S) =


0 if p ∈ S and BA p ∈ S
1 if p ∈ S and ¬BA p ∈ S
1 if ¬p ∈ S and BA p ∈ S
0 if ¬p ∈ S and ¬BA p ∈ S.

In other words, Bob’s utility is a function not merely of the
outcome of the game (p or ¬p), but of a more general ob-
ject we are calling a “situation”, and his utility in a given
situation S depends on his own actions combined with Al-
ice’s beliefs in exactly the manner prescribed by Table 1. As
noted above, we may very well wish to refine our represen-
tation of Alice’s state of surprise using more than two cate-
gories; indeed, we could allow a representation that permits
continuous probabilities, as has been done in the literature.
However, we will see that an “all-or-nothing” representation

1Technically, in [6], Bob’s utility can only be a function
of his own beliefs; this is generalized in [3] in the context
of extensive-form games, but the approach is applicable to
normal-form games as well.

of belief is enough to capture some interesting and complex
games.

The central concept we develop in this paper is that of
a language-based game, where utility is defined not on out-
comes or the Cartesian product of outcomes with some other
domain, but on situations. As noted, a situation can be con-
ceptualized as a collection of statements about the game; in-
tuitively, each statement is a description of something that
might be relevant to player preferences, such as whether or
not Alice believes that Bob will play a certain strategy. Of
course, this notion crucially depends on just what counts as
an admissible description. Indeed, the set of all admissible
descriptions, which we refer to as the underlying language of
the game, is a key component of our model. Since utility is
defined on situations, and situations are sets of descriptions
taken from the underlying language, a player’s preferences
can depend, in principle, on anything expressible in this lan-
guage, and nothing more. Succintly: players can prefer one
state of the world to another if and only if they can describe
the difference between the two, where “describe” here means
“express in the underlying language”.

Language-based games are thus parametrized by the un-
derlying language: changing the language changes the game.
The power and versatility of our approach derives in large
part from this dependence. Consider, for example, an under-
lying language that contains only terms refering to players’
strategies. Players’ preferences, then, can depend only on
the outcome of the game, as is the case classically. Thus
classical game theory is recovered as a special case of the
present work (see Sections 2.1 and 2.2 for details).

Enriching the underlying language allows for an expansion
and refinement of player preferences; in this manner we are
able to subsume, for example, work on psychological game
theory and reference-dependent preferences, in addition to
providing some uniformity to the project of defining new
and further expansions of the classical base. By contrast,
restricting the underlying language coarsens the domain of
player preference; this provides a framework for modeling
phenomena like coarse beliefs. A combination of these two
approaches yields a theory of belief-dependent preferences
incorporating coarse beliefs.

For the purposes of this paper, we focus primarily on
belief-dependent preferences and coarseness, although in Ex-
ample 6, we examine a simple scenario where a type of
procrastination is represented by a minor extension of the
underlying language. We make three major contributions.
First, as noted, our system is easy to use in the sense that
players’ preferences are represented with a simple and un-
cluttered formalism; complex psychological phenomena can
thus be captured in a direct and intuitive manner. Second,
we provide a formal game-theoretic representation of coarse
beliefs, and in so doing, expose an important insight: a dis-
crete representation of belief, often conceptually and techni-
cally easier to work with than its continuous counterpart, is
sufficient to capture psychological effects that have hereto-
fore been modeled only in a continuous framework. Sec-
tion 3 provides several examples that illustrate these points.
Third, we provide novel equilibrium analyses that do not
depend on the continuity of the expected utility function as
in [6]. (Note that such continuity assumptions are at odds
with our use of coarse beliefs.)

The rest of the paper is organized as follows. In the next
section, we develop the basic apparatus needed to describe
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our approach. Section 3 presents a collection of examples
intended to guide intuition and showcase the system. In
Section 4, we show that there is a natural route by which
solution concepts such as Nash equilibrium and rationaliz-
ability can be defined in our setting, and we address the
question of existence. Proofs, more discussion, and further
examples can be found in the full paper, which is available at
http://www.cs.cornell.edu/home/halpern/papers/lbg.pdf.

2. FOUNDATIONS

2.1 Game forms and intuition
Much of the familiar apparatus of classical game theory is

left untouched. A game form is a tuple Γ = (N, (Σi)i∈N )
where N is a finite set of players, which for convenience we
take to be the set {1, . . . , n}, and Σi is the set of strategies
available to player i. Following standard notation, we set

Σ :=
∏
i∈N

Σi and Σ−i :=
∏
j 6=i

Σj .

Elements of Σ are called outcomes or strategy profiles; given
σ ∈ Σ, we denote by σi the ith component of the tuple σ,
and by σ−i the element of Σ−i consisting of all but the ith
component of σ.

Note that a game form does not come equipped with util-
ity functions specifying the preferences of players over out-
comes Σ. The utility functions we employ are defined on
situations, which in turn are determined by the underlying
language, so, before defining utility, we must first formalize
these notions.

Informally, a situation is an exhaustive characterization of
a given state of affairs using descriptions drawn from the un-
derlying language. Assuming for the moment that we have
access to a fixed “language”, we might imagine a situation as
being generated by simply listing all statements from that
language that happen to be true of the world. Even at this
intuitive level, it should be evident that the informational
content of a situation is completely dependent on the ex-
pressiveness of the language. If, for example, the underlying
language consists of exactly two descriptions, “It’s raining”
and “It’s not raining”, then there are only two situations:

{“It’s raining”} and {“It’s not raining”}.

Somewhat more formally, a situation S is a set of formu-
las drawn from a larger pool of well-formed formulas, the
underlying language. We require that S include as many
formulas as possible while still being consistent; we make
this precise shortly.

The present formulation, informal though it is, is sufficient
to allow us to capture a claim made in the introduction: any
classical game can be recovered in our framework with the
appropriate choice of underlying language. Specifically, let
the underlying language be Σ, the set of all strategy profiles.
Situations, in this case, are simply singleton subsets of Σ,
as any larger set would contain distinct and thus intuitively
contradictory descriptions of the outcome of the game. The
set of situations can thus be identified with the set of out-
comes, so a utility function defined on outcomes is readily
identified with one defined on situations.

In this instance the underlying language, consisting solely
of atomic, mutually incompatible formulas, is essentially

structureless; one might wonder why call it a “language” at
all, rather than merely a “set”. Although, in principle, there
are no restrictions on the kinds of objects we might consider
as languages, it can be very useful to focus on those with
some internal structure. This structure has two aspects:
syntactic and semantic.

2.2 Syntax, semantics, and situations
The canonical form of syntactic structure in formal lan-

guages is grammar : a set of rules specifying how to compose
well-formed formulas from atomic constituents. One of the
best-known examples of a formal language generated by a
grammar is the language of classical propositional logic.

Given a set Φ of primitive propositions, let L(Φ) denote
the propositional language based on Φ, namely, the set of
formulas that can be obtained by starting with Φ and closing
off under ¬ and ∧. (We can define ∨ and → from ¬ and ∧
as usual.) Propositional logic is easily specialized to a game-
theoretic setting. Given a game form Γ = (N, (Σi)i∈N ), let

ΦΓ = {play i(σi) : i ∈ N, σi ∈ Σi},

where we read play i(σi) as “player i is playing strategy
σi”. Then L(ΦΓ) is a language appropriate for reasoning
about the strategies chosen by the players in Γ. We some-
times write play(σ) as an abbreviation for play1(σ1) ∧ · · · ∧
playn(σn).

Semantics provides a notion of truth. Recall that the se-
mantics of classical propositional logic is given by valuations
v : Φ → {true, false}. Valuations are extended to all formu-
las via the familiar truth tables for the logical connectives.
Each valuation v thereby generates a model, determining
the truth values of every formula in L(Φ). In the case of
the language L(ΦΓ), we restrict this class of models to those
corresponding to an outcome σ ∈ Σ; that is, we consider
only valuation functions vσ defined by

vσ(play i(σ
′
i)) = true if and only if σi = σ′i.

More generally, we consider only a setM of admissible mod-
els: the ones that satisfy some restrictions of interest.

A set of formulas F is said to be satisfiable (with respect
to a set M of admissible models) if there is some model in
M in which every formula of F is true. An L(Φ)-situation
is then defined to be a maximal satisfiable set of formulas
(with respect to the admissible models of L(Φ)): that is, a
satisfiable set with no proper superset that is also satisfiable.
Situations correspond to admissible models: a situation just
consists of all the formulas true in some admissible model.
Let S(L(Φ)) denote the set of L(Φ)-situations. It is not
difficult to see that S(L(ΦΓ)) can be identified with the set
Σ of outcomes.

Having illustrated some of the principle concepts of our
approach in the context of propositional logic, we now present
the definitions in complete generality. Let L be a language
with an associated semantics, that is, a set of admissible
models providing a notion of truth. We often use the term
“language” to refer to a set of well-formed formulas together
with a set of admissible models (this is sometimes called a
“logic”). An L-situation is a maximal satisfiable set of for-
mulas from L. Denote by S(L) the set of L-situations. A
game form Γ is extended to an L-game by adding utility
functions ui : S(L) → R, one for each player i ∈ N . L
is called the underlying language; we omit it as a prefix
when it is safe to do so.
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If we view Γ as an L(ΦΓ)-game, the players’ utility func-
tions are essentially defined on Σ, so an L(ΦΓ)-game is re-
ally just a classical game based on Γ. As we saw in Section
2.1, this class of games can also be represented with the
completely structureless language Σ. This may well be suf-
ficient, especially in cases where all we care about are two
or three formulas. However, having a structured underlying
language makes it easier to analyze the much broader class
of psychological games.

A psychological game is just like a classical game except
that players’ preferences can depend not only on what strate-
gies are played, but also on what beliefs are held. While
L(ΦΓ) is appropriate for reasoning about strategies, it can-
not express anything about beliefs, so our first step is to de-
fine a richer language. Fortunately, we have at our disposal a
host of candidates well-equipped for this task, namely those
languages associated with epistemic logics.

Fix a game form Γ = (N, (Σi)i∈N ), and let LB(ΦΓ) be the
language obtained by starting with the primitive proposi-
tions in ΦΓ and closing off under conjunction, negation, and
the modal operators Bi, for i ∈ N . We read Biϕ as “player
i believes ϕ”. Intuitively, this is a language for reasoning
about the beliefs of the players and the strategy profiles be-
ing used.

We give semantics to LB(ΦΓ) using Kripke structures, as
usual. But for many examples of interest, understanding the
(completely standard, although somewhat technical) details
is not necessary. Example 1 was ultimately analyzed as an
LB(ΦΓ)-game, despite the fact that we had not even defined
the syntax of this language at the time, let alone its seman-
tics. Section 3 provides more illustrations of this point.

A Γ-structure is a tuple M = (Ω, ~s, Pr1, . . . , P rn) satis-
fying the following conditions:

(P1) Ω is a nonempty topological space;

(P2) each Pri assigns to each ω ∈ Ω a probability measure
Pri(ω) on Ω;

(P3) ω′ ∈ Pri[ω] ⇒ Pri(ω
′) = Pri(ω), where Pri[ω] ab-

breviates supp(Pri(ω)), the support of the probability
measure;

(P4) ~s : Ω → Σ satisfies Pri[ω] ⊆ {ω′ : si(ω
′) = si(ω)},

where si(ω) denotes player i’s strategy in the strategy
profile ~s(ω).

These conditions are standard for KD45 belief logics in a
game-theoretic setting [1]. The set Ω is called the state
space. Conditions (P1) and (P2) set the stage to represent
player i’s beliefs in state ω ∈ Ω as the probability mea-
sure Pri(ω) over the state space itself. Condition (P3) says
essentially that players are sure of their own beliefs. The
function ~s is called the strategy function, assigning to
each state a strategy profile that we think of as the strate-
gies that the players are playing at that state. Condition
(P4) thus asserts that each player is sure of his own strat-
egy. The language LB(ΦΓ) can be interpreted in any Γ-
structure M via the strategy function, which induces a val-
uation [[·]]M : LB(ΦΓ)→ 2Ω defined recursively by:

[[play i(σi)]]M := {ω ∈ Ω : si(ω) = σi}
[[ϕ ∧ ψ]]M := [[ϕ]]M ∩ [[ψ]]M
[[¬ϕ]]M := Ω− [[ϕ]]M
[[Biϕ]]M := {ω ∈ Ω : Pri[ω] ⊆ [[ϕ]]M}.

Thus, the Boolean connectives are interpreted classically,
and Biϕ holds at state ω just in case all the states in the
support of Pri(ω) are states where ϕ holds.

Pairs of the form (M,ω), where M = (Ω, ~s, ~Pr) is a Γ-
structure and ω ∈ Ω, play the role of admissible models for
the language LB(ΦΓ). Given ϕ ∈ LB(ΦΓ), we sometimes
write (M,ω) |= ϕ or just ω |= ϕ instead of ω ∈ [[ϕ]]M , and
say that ω satisfies ϕ or ϕ is true at ω; we write M |= ϕ
and say that ϕ is valid in M if [[ϕ]]M = Ω. We say that ϕ is
satisfiable if for some state ω in some Γ-structure M (i.e.,
for some admissible model), ω |= ϕ. Given F ⊆ LB(ΦΓ),
we write ω |= F if for all ϕ ∈ F , ω |= ϕ; we say that F is
satisfiable if for some state ω in some M , ω |= F .

With this notion of satisfiability, we gain access to the
class of LB(ΦΓ)-games, where utility is defined on LB(ΦΓ)-
situations, namely, maximal satisfiable subsets of LB(ΦΓ).
In particular, we can extend any game form Γ to an LB(ΦΓ)-
game, a setting in which players’ preferences can depend, in
principle, on anything describable in the language LB(ΦΓ).

It is not hard to show that when there is more than
one player, S(LB(ΦΓ)) is uncountable. A utility function
ui : S(LB(ΦΓ))→ R can therefore be quite complicated in-
deed. We will frequently be interested in representing pref-
erences that are much simpler. For instance, though the
surprise proposal scenario presented in Example 1 can be
viewed as an LB(ΦΓ)-game, Bob’s utility uB does not de-
pend on any situation as a whole, but rather is determined
by a few select formulas. This motivates the following gen-
eral definition, identifying a particularly easy to understand
and well-behaved subclass of games.

Fix a language L. A function u : S(L) → R is called
finitely specified if there is a finite set of formulas F ⊂ L
and a function f : F → R such that every situation S ∈
S(L) contains exactly one formula from F , and whenever
ϕ ∈ S ∩ F , u(S) = f(ϕ). In other words, the value of
u depends only on the formulas in F . Thus u is finitely
specified if and only if it can be written in the form

u(S) =


a1 if ϕ1 ∈ S
...

...
ak if ϕk ∈ S,

for some a1, . . . , ak ∈ R and ϕ1, . . . , ϕk ∈ L.
A language-based game is called finitely specified if each

player’s utility function is. Many games of interest are finitely
specified. In a finitely specified game, we can think of a
player’s utility as being a function of the finite set F ; in-
deed, we can think of the underlying language as being the
structureless “language” F rather than L.

3. EXAMPLES
We now give a few examples to exhibit both the simplicity

and the expressive power of language-based games; more
examples are given in the full paper. Since we focus on the
language LB(ΦΓ), we write S to abbreviate S(LB(ΦΓ)).

Note that there is a unique strategy that player i uses in a
situation S ∈ S; it is the strategy σi such that play i(σi) ∈ S.
When describing the utility of a situation, it is often useful
to extract this strategy; therefore, we define ρi : S → Σi
implicitly by the requirement play i(ρi(S)) ∈ S. It is easy to
check that ρi is well-defined.

Example 2. Indignant altruism. Alice and Bob sit down
to play a classic game of prisoner’s dilemma, with one twist:
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neither wishes to live up to low expectations. Specifically,
if Bob expects the worst of Alice (i.e. expects her to de-
fect), then Alice, indignant at Bob’s opinion of her, prefers
to cooperate. Likewise for Bob. On the other hand, in the
absense of such low expectations from their opponent, each
will revert to their classical, self-serving behaviour.

The standard prisoner’s dilemma is summarized in Table
2:

c d
c (3,3) (0,5)
d (5,0) (1,1)

Table 2: The classical prisoner’s dilemma.

Let uA, uB denote the two players’ utility functions ac-
cording to this table, and let Γ denote the game form ob-
tained by throwing away these functions: Γ = ({A,B},ΣA,
ΣB) where ΣA = ΣB = {c, d}. We wish to define an
LB(ΦΓ)-game that captures the given scenario; to do so we
must define new utility functions on S. Informally, if Bob is
sure that Alice will defect, then Alice’s utility for defecting
is −1, regardless of what Bob does, and likewise reversing
the roles of Alice and Bob; otherwise, utility is determined
exactly as it is classically.

Formally, we simply define u′A : S → R by

u′A(S) =

 −1
if playA(d) ∈ S and
BB playA(d) ∈ S

uA(ρA(S), ρB(S)) otherwise,

and similarly for u′B .
Intuitively, cooperating is rational for Alice if she thinks

that Bob is sure she will defect, since cooperating in this case
would yield a minimum utility of 0, whereas defecting would
result in a utility of −1. On the other hand, if Alice thinks
that Bob is not sure she’ll defect, then since her utility in
this case would be determined classically, it is rational for
her to defect, as usual.

This game has much in common with the surprise proposal
of Example 1: in both games, the essential psychological el-
ement is the desire to surprise another player. Perhaps un-
surprisingly, when players wish to surprise their opponents,
Nash equilibria fail to exist—even mixed strategy equilibria.
Although we have not yet defined Nash equilibrium in our
setting, the classical intuition is wholly applicable: a Nash
equilibrium is a state of play where players are happy with
their choice of strategies given accurate beliefs about what
their opponents will choose. But there is a fundamental ten-
sion between a state of play where everyone has accurate
beliefs, and one where some player successfully surprises an-
other.

We show formally in Section 4.2 that this game has no
Nash equilibrium. On the other hand, players can certainly
best-respond to their beliefs, and the corresponding iterative
notion of rationalizability finds purchase here. In Section
4.3 we will import this solution concept into our framework
and show that every strategy for the indignant altruist is
rationalizable.

Example 3. A deeply surprising proposal. Bob hopes to
propose to Alice, but she wants it to be a surprise. He
knows that she would be upset if it were not a surprise, so
he would prefer not to propose if Alice so much as suspects

it. Worse (for Bob), even if Alice does not suspect a pro-
posal, if she suspects that Bob thinks she does, then she will
also be upset, since in this case a proposal would indicate
Bob’s willingness to disappoint her. Of course, like the gi-
ant tortoise on whose back the world rests, this reasoning
continues “all the way down”...

This example is adapted from a similar example given in
[6]; in that example, the man is considering giving a gift of
flowers, but rather than hoping to surprise the recipient, his
goal is the exact opposite: to get her flowers just in case she
is expecting them. Of course, the notion of “expectation”
employed, both in their example and ours, is quite a bit
more complicated than the usual sense of the word, involving
arbitrarily deeply nested beliefs.

Nonetheless, it is relatively painless to represent Bob’s
preferences in the language LB(ΦΓ), where Γ = ({A,B}, {·},
{p, q}) and p and q stand for Bob’s strategies of proposing
and not proposing, respectively (Alice has no decision to
make, so her strategy set is a singleton). For convenience,
we use the symbol Pi to abbreviate ¬Bi¬. Thus Piϕ holds
just in case player i is not sure that ϕ is false; this will be our
gloss for Alice “so much as suspecting” a proposal. Define
uB : S → R by

uB(S) =


1

if playB(p) ∈ S and
(∀k ∈ N)[PA(PBPA)kplayB(p) /∈ S]

1
if playB(q) ∈ S and
(∃k ∈ N)[PA(PBPA)kplayB(p) ∈ S]

0 otherwise,

where (PBPA)k is an abbreviation for PBPA · · ·PBPA (k
times). In other words, proposing yields a higher utility for
Bob in the situation S if and only if none of the formulas in
the infinite family {PA(PBPA)kplayB(p) : k ∈ N} occur in
S.

As in Examples 1 and 2, and in general when a player de-
sires to surprise an opponent, it is not difficult to convince
oneself informally that this game admits no Nash equilib-
rium. Moreover, in this case the infinitary nature of Bob’s
desire to “surprise” Alice has an even stronger effect: no
strategy for Bob is even rationalizable (see Section 4.3).

Example 4. Pay raise. Bob has been voted employee of
the month at his summer job, an honour that comes with
a slight increase (up to $1) in his per-hour salary, at the
discretion of his boss, Alice. Bob’s happiness is determined
in part by the raw value of the bump he receieves in his
wages, and in part by the sense of gain or loss he feels by
comparing the increase Alice grants him with the minimum
increase he expected to get. Alice, for her part, wants Bob
to be happy, but this desire is balanced by a desire to save
company money.

As usual, we first fix a game form that captures the players
and their available strategies. Let Γ = ({A,B},ΣA, {·}),
where ΣA = {s0, s1, . . . , s100} and sk represents an increase
of k cents to Bob’s per-hour salary (Bob has no choice to
make, so his strategy set is a singleton). Notice that, in
contrast to the other examples we have seen thus far, in this
game Bob’s preferences depend on his own beliefs rather
than the beliefs of his opponent. Broadly speaking, this is an
example of reference-dependent preferences: Bob’s utility is
determined in part by comparing the actual outcome of the
game to some “reference level”—in this case, the minimum
expected raise. This game also has much in common with a

43



scenario described in [3], in which a player Abi wishes to tip
her taxi driver exactly as much as he expects to be tipped,
but no more.

Define uB : S → R by

uB(S) = k + (k − r),

where k is the unique integer such that playA(sk) ∈ S, and

r := min{r′ : PB playA(sr′) ∈ S}.

Observe that r is completely determined by Bob’s beliefs:
it is the lowest raise he considers it possible that Alice will
grant him. We think of the first summand k as representing
Bob’s happiness on account of receiving a raise of k cents
per hour, while the second summand k − r represents his
sense of gain or loss depending on how reality compares to
his lowest expectations.

Note that the value of r (and k) is encoded in S via a finite
formula, so we could have written the definition of uB in a
fully expanded form where each utility value is specified by
the presense of a formula in S. For instance, the combination
k = 5, r = 2 corresponds to the formula

playA(s5)∧PB playA(s2)∧¬(PB playA(s0)∨PB playA(s1)),

which therefore determines a utility of 8.
Of course, it is just as easy to replace the minimum with

the maximum in the above definition (perhaps Bob feels
entitled to the most he considers it possible he might get), or
even to define the reference level r as some more complicated
function of Bob’s beliefs. The quantity k − r representing
Bob’s sense of gain or loss is also easy to manipulate. For
instance, given α, β ∈ R we might define a function f : R→
R by

f(x) =

{
αx if x ≥ 0
βx if x < 0,

and set

u′B(S) = k + f(k − r),

where k and r are determined as above. Choosing, say,
α = 1 and β > 1 results in Bob’s utility u′B incorporating
loss aversion: Bob is more upset by a relative loss than he
is elated by a same-sized relative gain. These kinds of issues
are discussed in [7]; in the full paper we analyze a central
example from this paper in detail.

Turning now to Alice’s preferences, we are faced with a
host of modeling choices. Perhaps Alice wishes to grant Bob
the smallest salary increase he expects but nothing more.
We can capture this by defining uA : S → R by

uA(S) = −|k − r|,

where k and r are as above. Or perhaps we wish to represent
Alice as feeling some fixed sense of guilt if she undershoots,
while her disutility for overshooting depends on whether she
merely exceeded Bob’s lowest expectations, or in fact ex-
ceeded even his highest expectations:

u′A(S) =

 −25 if k < r
r − k if r ≤ k < R
r −R+ 2(R− k) if k ≥ R,

where

R := max{R′ : PB playA(sR′) ∈ S}.

Or perhaps Alice’s model of Bob’s happiness is sophisticated
enough to include his sensations of gain and loss, so that,
for example,

u′′A(S) = uB(S)− δk,
where δ is some scaling factor. Clearly the framework is rich
enough to represent many possibilities.

Example 5. Preparing for a roadtrip. Alice has two tasks
to accomplish before embarking on a cross-country roadtrip:
she needs to buy a suitcase, and she needs to buy a car.

Here we sketch a simple decision-theoretic scenario in a
language-based framework. We choose the underlying lan-
guage in such a way as to capture two well-known “irra-
tionalities” of consumers. First, consumers often evaluate
prices in a discontinuous way, behaving, for instance, as if
the difference between $299 and $300 is more substantive
than the difference between $300 and $301. Second, con-
sumers who are willing to put themselves out (for example,
drive an extra 5 kilometers) to save $50 on a $300 purchase
are often not willing to drive that same extra distance to
save the same amount of money on a $20,000 purchase.

We do not claim a completely novel analysis; rather, we
aim to show how naturally a language-based approach can
account for these kinds of issues.

Both of the irrationalities described above can be captured
by assuming a certain kind of coarseness, specifically, that
the language over which Alice forms preferences does not de-
scribe prices with infinite precision. For example, we might
assume that the language includes as primitive propositions
terms of the form pQ, where Q ranges over a given partition
of the real line. We might further suppose that this partition
has the form

· · · ∪ [280, 290) ∪ [290, 300) ∪ [300, 310) ∪ · · · ,

at least around the $300 mark. Any utility function defined
over such a language cannot distinguish prices that fall into
the same partition. Thus, in the example above, Alice would
consider the prices $300 and $301 to be effectively the same
as far as her preferences are concerned. At the borderline
between cells of the partition, however, there is the potential
for a“jump”: we might reasonably model Alice as prefering a
situation where p[290,300) holds to one where p[300,310) holds.
A smart retailer, therefore, should set their price to be at
the higher end of a cell of the consumers’ partition.

To capture the second irrationality discussed above, it suf-
fices to assume that the partition that determines the under-
lying language is not only coarse, but is coarser for higher
prices. For example, around the $20,000 mark, we might
suppose that the partition has the form

· · · ∪ [19000, 19500) ∪ [19500, 20000) ∪ [20000, 20500) ∪ · · · .

In this case, while Alice may prefer a price of $300 to a price
of $350, she cannot prefer a price of $20,000 to a price of
$20,050, because that difference cannot be described in the
underlying language. This has a certain intuitive appeal: the
higher numbers get (or, more generally, the further removed
something is, in space or time or abstraction), the more you
“ballpark” it—the less precise your language is in describing
it. Indeed, psychological experiments have demonstrated
that Weber’s law2, traditionally applied to physical stimuli,
2Weber’s law asserts that the minimum difference between
two stimuli necessary for a subject to discriminate between
them increases as the magnitude of the stimuli increases.
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finds purchase in the realm of numerical perception: larger
numbers are subjectively harder to discriminate from one
another [8; 11]. Our choice of underlying language represents
this phenomenon simply, while exhibiting its explanatory
power.

Example 6. Returning a library book. Alice has learned
that a book she borrowed from the library is due back to-
morrow. As long as she returns it by tomorrow, she’ll avoid a
late fee; returning it today, however, is mildly inconvenient.

Here we make use of an extremely simple example to il-
lustrate how to model an ostensibly dynamic scenario in a
normal-form framework by employing a suitable underlying
language. The idea is straightforward: Alice has a choice
to make today, but how she feels about it depends on what
she might do tomorrow. Specifically, if she returns the li-
brary book tomorrow, then she has no reason to feel bad
about not returning it today. Since the future has yet to be
determined, we model Alice’s preferences as depending on
what action she takes in the present together with what she
expects to do in the future.

Let Γ = (A, {return,wait}) be a game form representing
Alice’s two current options, and set Φ′Γ := ΦΓ ∪{tomorrow};
thus Φ′Γ is the usual set of primitive propositions (represent-
ing strategies) together with a single new addition, tomor-
row, read “Alice will return the book tomorrow”.

An LB(Φ′Γ)-game allows us to specify Alice’s utility in a
manner consistent with the intuition given above. In partic-
ular, we can define uA : S(LB(Φ′Γ))→ R by

uA(S) =

 −1 if playA(return) ∈ S
1 if playA(wait) ∧BAtomorrow ∈ S
−5 otherwise,

so Alice prefers to wait if she expects to return the book
tomorrow, and to return the book today otherwise.

In this example, Alice’s utility depends on her beliefs, as
it does in psychological game theory. Unlike psychologi-
cal game theory, however, her utility depends on her beliefs
about features of the world aside from which strategies are
being played. This is a natural extension of the psychologi-
cal framework in a language-based setting.

This example also hints at another interesting application
of language-based games. A careful look at the language
LB(Φ′Γ) reveals an oddity: as far as the semantics are con-
cerned, playA(return) and tomorrow are independent primi-
tive propositions, despite being intuitively contradictory. Of
course, this can be rectified easily enough: we can simply in-
sist in the semantics that whenever playA(return) holds at
a state, tomorrow does not. But in so doing, we have intro-
duced a further complexity: the strategy that Alice chooses
now determines more about the situation than merely the
fact of which strategy she has chosen.

This observation reveals the need for a good theory of
counterfactuals. After all, it is not just the true state of the
world that must satisfy the semantic contraints we impose,
but also the counterfactual situations we consider when de-
termining whether or not a player is behaving rationally.
In Section 4.1, we give a formal treatment of rationality in
LB(ΦΓ)-games that skirts this issue; however, we believe
that a more substantive treatment of counterfactual reason-
ing in games is both important and interesting, and that the
present framework is a promising setting in which to develop
such a theory.

Returning to the example at hand, we might emphasize
the new element of “control” Alice has by providing her with
explicit mechanisms of influencing her own beliefs about to-
morrow. For example, perhaps a third strategy is available
to her, remind, describing a state of affairs where she keeps
the book but places it on top of her keys, thus decreasing
the likelihood that she will forget to take it when she leaves
the next day.

More generally, this simple framework allows us to model
commitment devices [5]: we can represent players who ratio-
nally choose to perform certain actions (like buying a year-
long gym membership, or throwing away their “fat jeans”)
not because these actions benefit them immediately, but be-
cause they make it subjectively more likely that the player
will perform certain other desirable actions in the future
(like going to the gym regularly, or sticking with a diet) that
might otherwise be neglected. In a similar manner, we can
succinctly capture procrastination: if, for example, you be-
lieve that you will quit smoking tomorrow, then the health
benefits of quitting today instead might seem negligible—
so negligible, in fact, that quitting immediately may seem
pointless, even foolish. Of course, believing you will do
something tomorrow is not the same thing as actually doing
it when tomorrow comes, thus certain tasks may be delayed
repeatedly.

4. SOLUTION CONCEPTS
A number of important concepts from classical game the-

ory, such as Nash equilibrium and rationalizability, have been
completely characterized epistemically, using Γ-structures.
In LB(ΦΓ)-games (or, more generally, in language-based
games where the language includes belief), we can use the
epistemic characterizations as the definitions of these solu-
tion concepts. This yields natural definitions that generalize
those of classical game theory. We begin by defining ratio-
nality in our setting.

4.1 Rationality
We call a player i rational if he is best-responding to his

beliefs: the strategy σi he is using must yield an expected
utility that is at least as good as any other strategy σ′i he
could play, given his beliefs. In classical game theory, the
meaning of this statement is quite clear. Player i has beliefs
about the strategy profiles σ−i used by the other players.
This makes it easy to compute what i’s payoffs would be
if he were to use some other strategy σ′i: since i’s utility
just depends on the strategy profile being used, we simply
replace σi by σ′i in these strategy profiles, and compute the
new expected utility. Thus, for example, in a two-player
game, if player 1 places probability 1/2 on the two strategies
σ2 and σ′2 for player 2, then his expected utility playing σ1

is (u1(σ1, σ2)+u1(σ1, σ
′
2))/2, while his expected utility if he

were to play σ′1 is (u1(σ′1, σ2) + u1(σ′1, σ
′
2))/2.

We make use of essentially the same approach in language-
based games. Let (Γ, (ui)i∈N ) be an LB(ΦΓ)-game and fix

a Γ-structure M = (Ω, ~s, ~Pr). Observe that for each ω ∈ Ω
and each i ∈ N , there is a unique LB(ΦΓ)-situation S such
that ω |= S; we denote this situation by S(M,ω) or just
S(ω) when the Γ-structure is clear from context.

If play i(σi) ∈ S(ω), then given σ′i ∈ Σi we might näıvely
let S(ω/σ′i) denote the set S(ω) with the formula play i(σi)
replaced by play i(σ

′
i), and define ûi(σ

′
i, ω), the utility that

i would get if he played σ′i in state ω, as ui(S(ω/σ′i)). Un-
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fortunately, ui is not necessarily defined on S(ω/σ′i), since
it is not the case in general that this set is satisfiable; in-
deed, S(ω/σ′i) is satisfiable if and only if σ′i = σi. This
is because other formulas in S(ω), for example the formula
Bi play i(σi), logically imply the formula play i(σi) that was
removed from S(ω) (recall that our semantics insist that ev-
ery player is sure of their own strategy). With a more careful
construction of the “counterfactual” set S(ω/σ′i), however,
we can obtain a definition of ûi that makes sense.

A formula ϕ ∈ LB(ΦΓ) is called i-independent if for
each σi ∈ Σi, every occurrence of play i(σi) in ϕ falls within
the scope of some Bj , j 6= i. Intuitively, an i-independent
formula describes a proposition that is independent of player
i’s choice of strategy, such as another player’s strategy, an-
other player’s beliefs, or even player i’s beliefs about the
other players; on the other hand, player i’s beliefs about his
own choices are excluded from this list, as they are assumed
to always be accurate, and thus dependent on those choices.
Given S ∈ S, set

ρ−i(S) = {ϕ ∈ S : ϕ is i-independent}.3

Let S−i denote the image of S under ρ−i. Elements of S−i
are called i-situations; intuitively, they are complete de-
scriptions of states of affairs that are out of player i’s con-
trol. Informally, an i-situation S−i ∈ S−i determines every-
thing about the world (expressible in the language) except
what strategy player i is employing. This is made precise
in Proposition 1. Recall that ρi(S) denotes the (unique)
strategy that i plays in S, so play i(ρi(S)) ∈ S.

Proposition 1. For each i ∈ N , the map ~ρi : S → Σi ×
S−i defined by ~ρi(S) = (ρi(S), ρ−i(S)) is a bijection.

This identification of S with the set of pairs Σi×S−i pro-
vides a well-defined notion of what it means to alter player i’s
strategy in a situation S “without changing anything else”.
By an abuse of notation, we write ui(σi, S−i) to denote ui(S)
where S is the unique situation corresponding to the pair
(σi, S−i), that is, ~ρi(S) = (σi, S−i). Observe that for each
state ω ∈ Ω and each i ∈ N there is a unique set S−i ∈ S−i
such that ω |= S−i. We denote this set by S−i(M,ω), or just
S−i(ω) when the Γ-structure is clear from context. Then the
utility functions ui induce functions ûi : Σi×Ω→ R defined
by

ûi(σi, ω) = ui(σi, S−i(ω)).

As in the classical case, we can view the quantity ûi(σi, ω)
as the utility that player i would have if he were to play σi
at state ω. It is easy to see that this generalizes the clas-
sical approach in the sense that it agrees with the classical
definition when the utility functions ui depend only on the
outcome.

For each i ∈ N , let EUi : Σi × Ω → R be the expected
utility of playing σi according to player i’s beliefs at ω. For-
mally:

EUi(σi, ω) =

∫
Ω

ûi(σi, ω
′) dPri(ω);

3As (quite correctly) pointed out by an anonymous reviewer,
this notation is not standard, since ρ−i is not a profile of
functions of the type ρi. Nonetheless, we feel it is appropri-
ate in the sense that, while ρi extracts from a given situation
player i’s strategy, ρ−i extracts “all the rest” (cf. Proposi-
tion 1), the crucial difference here being that this includes
far more than just the strategies of the other players.

when Ω is finite, this reduces to

EUi(σi, ω) =
∑
ω′∈Ω

ûi(σi, ω
′) · Pri(ω)(ω′).

Define BRi : Ω→ 2Σi by

BRi(ω) = {σi ∈ Σi : (∀σ′i ∈ Σi)[EUi(σi, ω) ≥ EUi(σ′i, ω)]};

thus BRi(ω) is the set of best-reponses of player i to his
beliefs at ω, that is, the set of strategies that maximize his
expected utility.

With this apparatus in place, we can expand the underly-
ing language to incorporate rationality as a formal primitive.
Let

Φrat
Γ := ΦΓ ∪ {RATi : i ∈ N},

where we read RATi as “player i is rational”. We also em-
ploy the syntactic abbreviation RAT ≡ RAT1 ∧ · · · ∧RATn.
Intuitively, LB(Φrat

Γ ) allows us to reason about whether or
not players are being rational with respect to their beliefs
and preferences.

We wish to interpret rationality as expected utility max-
imization. To this end, we extend the valuation function
[[·]]M to LB(Φrat

Γ ) by

[[RATi]]M := {ω ∈ Ω : si(ω) ∈ BRi(ω)}.

Thus RATi holds at state ω just in case the strategy that
player i is playing at that state, si(ω), is a best-response to
his beliefs.

4.2 Nash equilibrium
Having formalized rationality, we are in a position to draw

on work that characterizes solutions concepts in terms of
RAT .

Let Γ = (N, (Σi)i∈N ) be a game form in which each set Σi
is finite, and let ∆(Σi) denote the set of all probability mea-
sures on Σi. Elements of ∆(Σi) are the mixed strategies
of player i. Given a mixed strategy profile

µ = (µ1, . . . , µn) ∈ ∆(Σ1)× · · · ×∆(Σn),

we define a Γ-structure Mµ that, in a sense made precise
below, captures “equilibrium play” of µ and can be used to
determine whether or not µ constitutes a Nash equilibrium.

Set

Ωµ = supp(µ1)× · · · × supp(µn) ⊆ Σ1 × · · · × Σn.

Define a probability measure π on Ωµ by

π(σ1, . . . , σn) =

n∏
i=1

µi(σi),

and for each σ, σ′ ∈ Ωµ, let

Prµ,i(σ)(σ′) =

{
π(σ′)/µi(σi) if σi = σ′i
0 otherwise.

Let Mµ = (Ωµ, idΩµ , ~Prµ). It is easy to check that Mµ is a
Γ-structure; call it the characteristic Γ-structure for µ.
At each state in Mµ, each player i is sure of his own strategy
and has uncertainty about the strategies of his opponents;
however, this uncertainty takes the form of a probability dis-
tribution weighted according to µ−i, so in effect each player
i correctly ascribes the mixed strategy µj to each of his op-
ponents j 6= i. It is well known (and easy to show) that a
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mixed strategy profile µ is a Nash equilibrium in the clas-
sical sense if and only if each player is rational (i.e. maxi-
mizing expected utility) at every state in the characteristic
Γ-structure for µ. Accordingly, we define a Nash equilib-
rium (in an LB(ΦΓ)-game) to be a mixed strategy profile µ
such that Mµ |= RAT . It is immediate that this definition
generalizes the classical definition of Nash equilibrium.

We note that there are several other epistemic character-
izations of Nash equilibrium besides the one presented here.
While in the classical setting they all generate equivalent
solution concepts, this need not be true in our more general
model. We believe that investigating the solution concepts
that arise by teasing apart these classically equivalent no-
tions is an interesting and promising direction for future
research.

In contrast to the classical setting, Nash equilibria are not
guaranteed to exist in general; indeed, this is the case for the
indignant altruism game of Example 2.

Proposition 2. There is no Nash equilibrium in the in-
dignant altruism game.

Proof. We must show that for every mixed strategy pro-
file

µ = (µA, µB) ∈ ∆({c, d})×∆({c, d}),

the corresponding characteristic Γ-structure Mµ 6|= RAT .
Suppose first that µA(c) > 0. Then Mµ |= ¬BB playA(d),

which implies that Alice’s utility at every state in Mµ co-
incides with the classical prisoner’s dilemma, so she is not
rational at any state where she cooperates. Since, by defi-
nition, Mµ contains a state where Alice cooperates, we con-
clude that Mµ 6|= RATA, so µ cannot be a Nash equilibrium.

Suppose instead that µA(c) = 0. ThenMµ |= BB playA(d),
and so Alice, being sure of this, is not rational at any state
where she defects, since by definition she is guaranteed a
utility of −1 in that case. By definition, Mµ contains a state
where Alice defects (in fact, Alice defects in every state), so
we can conclude as above that Mµ 6|= RATA, which means
that µ cannot be a Nash equilibrium.

What went wrong here? Roughly speaking, the utility
functions in this game exhibit a kind of “discontinuity”: the
utility of defecting is −1 precisely when your opponent is
100% certain that you will defect. However, as soon as this
probability dips below 100%, no matter how small the drop,
the utility of defecting jumps up to at least 1.

Broadly, this issue arises in L-games whenever L is limited
to a coarse-grained notion of belief, such as the underlying
language in this example, which only contains belief modal-
ities representing 100% certainty. However, since coarseness
is a central feature we wish to model, the lack of existence
of Nash equilibria in general might be viewed as a problem
with the notion of Nash equilibrium itself, rather than a de-
fect of the underlying language. Indeed, the requirements
that a mixed strategy profile must satisfy in order to qualify
as a Nash equilibrium are quite stringent: essentially, each
player must evaluate his choice of strategy subject to the
condition that his choice is common knowledge! As we have
seen, this condition is not compatible with rationality when
a player’s preference is to do something unexpected.

More generally, this tension arises with any solution con-
cept that requires players to have common knowledge of the
mixed strategies being played (the “conjectures”, in the ter-

minology of [2]). In fact, Proposition 2 relies only on second-
order knowledge of the strategies: whenever Alice knows
that Bob knows her play, she is unhappy. In particular, any
alternative epistemic characterization of Nash equilibrium
that requires such knowledge is subject to the same non-
existence result. Furthermore, we can use the same ideas
to show that there is no correlated equilibrium [1] in the
indignant altruism game either (once we extend correlated
equilibrium to our setting).

4.3 Rationalizability
In this section, we define rationalizability in language-

based games in the same spirit as we defined Nash equi-
librium in Section 4.2. As shown by Tan and Werlang [12]
and Brandenburger and Dekel [4], common belief of rational-
ity characterizes rationalizable strategies. Thus, we define
rationalizability that way here.

Let LCB(Φrat
Γ ) be the language obtained by starting with

the primitive propositions in Φrat
Γ and closing off under con-

junction, negation, the modal operators Bi, for i ∈ N , and
the modal operator CB. We read CBϕ as “there is common
belief of ϕ”. Extend [[·]]M to LCB(Φrat

Γ ) by setting

[[CBϕ]]M :=

∞⋂
k=1

[[EBkϕ]]M ,

where

EBϕ ≡ B1ϕ ∧ · · · ∧Bnϕ, and

EBkϕ ≡ EB(EBk−1ϕ).

For convenience, we stipulate that EB0ϕ ≡ ϕ. We read
EBϕ as “everyone believes ϕ”. Thus, intuitively, CBϕ holds
precisely when everyone believes ϕ, everyone believes that
everyone believes ϕ, and so on. We define a strategy σi ∈ Σi
to be rationalizable (in an LB(ΦΓ)-game) if the formula
play i(σi) ∧ CB(RAT ) is satisfiable in some Γ-structure.

Although there are no Nash equilibria in the indignant
altruism game, as we now show, every strategy is rational-
izable.

Proposition 3. Every strategy in the indignant altruism
game is rationalizable.

Proof. Consider the Γ-structure in Figure 1.

Figure 1: A Γ-structure for indignant altruism.

The valuations of the primitive propositions at each of the
four states are labeled in the obvious way. Arrows labeled i
based at state ω point to all and only those states in Pri[ω]
(so every probability measure has exactly one state in its
support).
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As discussed in Example 2, it is rational to cooperate in
this game if you believe that your opponent believes that
you will defect, and it is rational to defect if you believe
that your opponent believes you will cooperate. Given this,
it is not difficult to check that RAT holds at each state of
this Γ-structure, and therefore so does CB(RAT ). Thus, by
definition, every strategy is rationalizable.

Does every language-based game admit a rationalizable
strategy? Every classical game does. This follows from the
fact that every strategy in a Nash equilibrium is rationaliz-
able, together with Nash’s theorem that every (finite) game
has a Nash equilibrium (cf. [10]). In the language-based
setting, while it is immediate that every strategy in a Nash
equilibrium is rationalizable, since Nash equilibria do not
always exist, we cannot appeal to this argument. In fact,
we have already seen an example of an LB(ΦΓ)-game that
admits no rationalizable strategy.

Proposition 4. The deeply surprising proposal game has
no rationalizable strategies.

Proof. Fix a Γ-structure M = (Ω, ~s, ~Pr) and suppose
for contradiction that ω ∈ Ω is such that ω |= CB(RAT ).
Consider first the case where Alice does not expect∗ a pro-
posal at state ω, where “expect∗” denotes the infinitary no-
tion of expectation at play in this example: for all k ≥ 0,
ω |= ¬PA(PBPA)kplayB(p). Thus, for all k ≥ 0, ω |=
BA(BBBA)k¬playB(p); taking k = 0, it follows that for all
ω′ ∈ PrA[ω], ω′ |= ¬playB(p). Moreover, since CB(RAT )
holds at ω, certainly ω′ |= RATB . But if Bob is ratio-
nally not proposing at ω′, then he must at least consider
it possible that Alice expects∗ a proposal: for some k ∈
N, ω′ |= PBPA(PBPA)kplayB(p). But this implies that
ω |= PA(PBPA)k+1playB(p), contradicting our assumption.
Thus, any state where CB(RAT ) holds is a state where Alice
expects∗ a proposal.

So suppose that Alice expects∗ a proposal at ω. It fol-
lows that there is some state ω′ satisfying ω′ |= playB(p) ∧
CB(RAT ). But if Bob is rationally playing p at ω′, there
must be some state ω′′ ∈ PrB [ω′] where Alice doesn’t expect∗

it; however, we also know that ω′′ |= CB(RAT ), which we
have seen is impossible.

This completes the argument: CB(RAT ) is not satisfi-
able. It is worth noting that this argument fails if we re-
place “expects∗” with “expects≤K”, where this latter term is
interpreted to mean

(∀k ≤ K)[¬PA(PBPA)kplayB(p)].

In the full paper, we provide a condition that guarantees
the existence of rationalizable strategies in LB(ΦΓ)-games.
The essential ingredient is a kind of compactness assumption
on the language LB(Φrat

Γ ). Roughly speaking, we require
that no player can fail to be rational for an “infinitary” rea-
son. All finitely-specified LB(ΦΓ)-games turn out to satisfy
this condition, so we obtain the following:

Theorem 1. Every finitely-specified LB(ΦΓ)-game has a
rationalizable strategy.

Since we expect to encounter finitely-specified games most

often in practice, this suggests that the games we are likely
to encounter will indeed have rationalizable strategies.
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