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Abstract

The true belief components of Plato’s tripartite definition of knowledge as justified true belief
are represented in formal epistemology by modal logic and its possible worlds semantics. At the
same time, the justification component of Plato’s definition did not have a formal representation.
This paper introduces the notion of justification into formal epistemology. Epistemic logic with
justification, along with the usual knowledge operator 2F (F is known), contains assertions t:F
(t is a justification for F ). We suggest an epistemic semantics which augments Kripke models
with a natural Fitting-style treatment of justification assertions t:F . Completeness and some
new specific properties of basic systems of epistemic logic with justification are established.

1 Introduction

Plato’s much celebrated tripartite definition of knowledge as justified true belief (JTB) is generally
regarded as a set of necessary conditions for the possession of knowledge. Due to Hintikka, the “true
belief” components have been fairly formalized by means of modal logic and its possible worlds
semantics. Despite the fact that the justification condition has received the greatest attention in
epistemology (cf., for example, [12, 22, 26, 27, 32, 33, 34, 40]), it lacked a formal representation.
The issue of finding a formal epistemic logic with justification has been discussed in [44]. Such a
logic should contain assertions of the form 2F (F is known), along with those of the form t:F (t is
a justification for F ).

We introduce justification into formal epistemology by combining Hintikka-style epistemic
modal logic with justification calculi arising from the logic of proofs ([2, 3, 4]). In particular,
we consider natural combinations of epistemic modal logic S4 with the logic of proofs LP. However,
this approach is flexible with respect to both the knowledge/belief component for 2F and the
justification component for t:F , which can be chosen independently.

Epistemic systems with justification based on the logic of proofs LP use the following plausible
assumptions: 1) each axiom has justification; 2) justification is checkable; 3) justification assertion
of a statement implies knowledge of this statement; 4) any justification is compatible with any
other justification. There are other known justification systems ([8, 10, 11]), each capturing its own
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set of justification properties; this opens the way to a variety of systems for epistemic logic with
justification.

Formalization of justification significantly expands the expressive power of epistemic logic and
provides a new tool for formal studies in epistemology and applications. Here are some epistemo-
logical notions which seem to be affected by this new development.

1. The foundational Gettier problem of augmenting the tripartite JTB definition of knowledge
(cf., for example, [12, 22, 26, 27, 32, 33, 34, 40]) becomes a formal epistemology issue. Within
the basic epistemic systems introduced in this paper, the Gettier counterexamples fail because of
assumption 3), which yields that any “justified” sentence should be true. This may be regarded as
a kind of a “no false lemmas” formal solution to the Gettier problem. However, we are not taking
sides in this issue: the proposed framework provides formal tools for exploring other solutions of
the Gettier problem as well.

2. The traditional Hintikka-style modal logic approach to knowledge has the well-known de-
fect of logical omniscience, caused by an unrealistic stipulation that an agent knows all logical
consequences of his/her assumptions ([16, 36, 41, 42]). The usual epistemic modality 2F should
be regarded as “potential knowledge” or “knowability” (cf. [20]) rather than actual knowledge.
Epistemic systems with justification address the issue of logical omniscience in a natural way. A
justified knowledge t:F cannot be asserted without presenting an explicit justification t for F , hence
justified knowledge is not logically omniscient1.

3. Epistemic logic with justifications was used in [6] to offer a new approach to common
knowledge. A new modal operator Jϕ for justified knowledge introduced in [6] is defined as a
forgetful projection of justification assertions t :ϕ in a multi-agent epistemic logic with common
justification. It turned out that justified knowledge is a special constructive version of common
knowledge and can be used as such in solving specific problems. Justified knowledge is considerably
more flexible and in many respects easier than the traditional common knowledge.

4. There is one more issue which is naturally handled in the epistemic logic with justification:
an intensional and extensional representation of knowledge. Knowledge statements “F is known”
(2F ) remain extensional, as in Hintikka’s logic of knowledge, whereas new justification statements
t:F are already intensional. Indeed, the facts that t:F holds and G is (even provably) equivalent
to F do not yield t:G as well. If there is a justification s for F →G, then a justification for G is a
certain function of s and t, which is, generally speaking, different from t. Formal axioms and rules
of epistemic logic with justification capture this distinction.

5. Justification enables us to formulate new epistemic principles. For example, in the context
of mathematical provability, the modal principle of negative introspection ¬2F → 2¬2F is not
valid. A purely explicit version of negative introspection ¬(x :F ) → t(x) :¬(x :F ) does not hold
in the logic of proofs LP either. However, negative introspection in a mixed explicit-implicit form
¬(t :F ) → 2¬(t :F ) is valid in the provability semantics ([2]), which provides a good reason for
considering this principle in the general epistemic context.

2 The origins of epistemic logic with justification

The logic of proofs LP was inspired by the classical works of the 1930s by Kolmogorov [29] and
Gödel ([23, 24]) and found in [3, 4] (see also surveys [5, 7, 15]). LP describes all valid principles of

1This property was formally established for the logic of proofs LP in a recent work by S. Artemov and R. Kuznets:
for any valid knowledge assertion t:F there exists a proof for F which length is linear in the length of t:F .
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proof operators t:F
t is a proof of F in Peano arithmetic (1)

with an appropriate set of operations on proofs sufficient to realize the whole of S4 explicitly. A
similar explicit counterpart of S5 was found in [8]. Explicit versions of K, T, D, K4, and D4 were
found in [10, 11]2.

A semantical approach to the logic of proofs has been developed in the papers by Mkrtychev
[35] and Fitting [17, 19, 20], where the semantics of justification assertions t:F as “F holds and t
is a justification for F” was coined.

Joint logics of proofs and provability, studied in [2, 9, 37, 38, 39, 43, 45], are of special interest
for the purposes of this paper, since they serve as prototypes of epistemic logic with justification.

In this paper, we study two systems of epistemic logics with justification. The basic one,
S4LP, consists of S4 combined with LP as a calculus of justification and the principle t:F →2F
connecting justification with knowledge. The other system, S4LPN, is S4LP augmented by the
principle of explicit negative introspection ¬(t :F ) → 2¬(t :F ) which first came up in the logics
of proofs and provability [2]. We establish soundness and completeness theorems for S4LP and
S4LPN with respect to AF-semantics. Furthermore, both S4LP and S4LPN are shown to enjoy
the arithmetical provability semantics when 2F is interpreted as the so-called strong provability
operator (cf. [14]):

F is true and provable in Peano arithmetic .

Systems S4LP and S4LPN were introduced in our technical report [9], where Fitting models
of the logic of proofs were adopted for epistemic logic with justification. Soundness of S4LP with
respect to F-models, Theorems 3 and 4 of the current paper were established in [9]. A question of
completeness of S4LP with respect to F-models was formulated there as an open problem. Later
in [18], Fitting answered this question and established the desired completeness result. A general
notion of AF-model covering all known systems of epistemic logic with justification, S4LP and
S4LPN including, was introduced by Artemov in [6].

Both F-models and AF-models make sense for multi-agent epistemic logics with justification.
F-models describe relationships between justification assertions t:ϕ and their forgetful projection,
the justified knowledge modality Jϕ introduced in [6]. The intended reading of Jϕ is “justification
of ϕ is available.” In a formal model, J is the modality whose accessibility relation coincides
with the evidence accessibility relation Re. AF-models describe relationships between justification
assertions t:ϕ and knowledge of an arbitrary agent who respects evidence, but whose knowledge
may go beyond the strictly justified one (cf. [6]).

3 The logic of proofs as a general calculus of justification

The logic of proofs naturally extends classical propositional logic by adding symbolically represented
proofs into the language of the system. Internal proof terms in LP are called proof polynomials.
A new formula formation rule is postulated, stating that t:F is a formula whenever t is a proof
polynomial and F is an arbitrary formula, hence the language of LP is a general propositional
proof-carrying language. According to the completeness theorems from [3, 4], LP captures exactly
the set of all valid logical principles concerning propositions and mathematical proofs with a fixed,
sufficiently rich set of operations on proofs. Moreover, by the realization theorem from [3, 4], proof
polynomials suffice to recover the explicit provability content in all S4-theorems (and therefore all

2All these systems of the logic of proofs lie within Gabbay’s Labelled Deductive System framework [21].
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intuitionistic propositional theorems) by realizing modalities in the latter with appropriate proof
terms. In a more general setting, LP may be regarded as a device that makes reasoning about
knowledge explicit and keeps track of the justification.

Here are some formal definitions.

Definition 1. Proof polynomials are terms built from proof variables x, y, z, . . . and proof constants
a, b, c, . . . by means of three operations: application “·” (binary), union “+” (binary), and proof
checker “!” (unary).

Definition 2. Using t to stand for any proof polynomial and S for any sentence variable, the
formulas are defined by the grammar

A = ⊥ | S | A1→A2 | A1 ∧A2 | A1 ∨A2 | ¬A | t:A .

We assume that “t:( )” and “¬” bind stronger than “∧” and “∨,” which bind stronger than “→ .”

Definition 3. The logic of proofs LP has the following Hilbert-style axioms and rules:

I. The standard set of axioms for classical propositional logic, for example, A1-A10 from [28]
R1. Modus Ponens

II. LP1. s:(F→G) → (t:F→(s·t):G) (application)
LP2. t:F → !t:(t:F ) (proof checker)
LP3. s:F→(s+t):F , t:F→(s+t):F (union)
LP4. t:F→F (reflexivity)
R2. ` c:A, where A is an axiom from I - II and c is a proof constant

(constant specification rule)

The principle LP1 specifies the basic operation of application: a justification of an implication
F→G applied to any justification of the premise F returns a justification of the conclusion G. LP2
is the verifiability property of evidence: for any evidence t of F , the result of applying a checker
to t, !t, provides a justification of t :F . LP3 reflects the monotonicity principle: a justification
for F remains a justification after adding any additional evidence. Finally, LP4 is the reflexivity
property.

A constant specification CS is a set {c1:A1, c2:A2, . . .} of formulas in which each Ai is an axiom
from I-II and each ci is a proof constant. By default, with each derivation in LP we associate
a constant specification CS that consists of formulas introduced in this derivation by the rule of
constant specification. The claim that F is derivable in LP is equivalent to the existence of a
derivation with a constant specification CS associated with this derivation, i.e:

F is derivable given c1:A1, . . . , cn:An .

LP is closed under substitutions of proof polynomials for proof variables and formulas for proposi-
tional variables, and LP enjoys the deduction theorem.

In addition to the arithmetical completeness theorem, LP enjoys two fundamental properties:
internalization and realizability.

Proposition 1. (Internalization) If A1, . . . , Ak ` F then for some proof polynomial p(x1, . . . , xk)

x1:A1, . . . , xk:Ak ` p(x1, . . . , xk):F .
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Proposition 2. (Realizability) There is an effective procedure that constructs a realization r, which
substitutes proof polynomials for all modalities in a given S4-derivation of formula F and thereby
produces formula F r derivable in LP.

The logic of proofs LP may be regarded as the explicit version of S4. A paper [8] introduced
a variant of the logic of proofs corresponding to S5. Logics of proofs corresponding to the modal
logics K, K4, D, D4, and T were described in [10, 11].

4 Basic epistemic logic with justification

We introduce the basic epistemic logic with justifications, S4LP, consisting of S4 as the “knowl-
edge component” and LP as the “justification component” together with the principle t:F →2F
connecting justification with knowledge.

Definition 4. Proof polynomials for S4LP are the same as proof polynomials for LP, i.e., they
are terms built from variables x, y, z, . . . and constants a, b, c, . . . by means of three operations,
application “·” (binary), union “+” (binary), and evidence checker “!” (unary). Formulas of the
language of S4LP are defined by the grammar

A = ⊥ | S | A1→A2 | A1 ∧A2 | A1 ∨A2 | ¬A | 2A | t:A .

We assume also that “2,” binds stronger than “∧” and “∨.”

Definition 5. The system S4LP has the following axioms and rules:

I. Classical propositional logic

The standard set of axioms, for example, A1-A10 from [28]
R1. Modus ponens

II. Logic of Proofs LP

LP1. s:(F→G) → (t:F→(s·t):G) (application)
LP2. t:F → !t:(t:F ) (inspection)
LP3. s:F→(s+t):F , t:F→(s+t):F (union)
LP4. t:F→F (reflexivity)
R2. ` c:A, where A is an axiom from I-IV and c is a proof constant

(constant specification)

III. Basic Epistemic Logic S4

E1. 2(F→G)→(2F→2G)
E2. 2F→22F
E3. 2F→F
R3. ` F ⇒ ` 2F

IV. Principle connecting explicit and implicit knowledge

C1. t:F→2F (justification-knowledge connection)
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Obviously, S4LP contains both LP and S4. The principle LP4 is redundant, but we keep it listed
for convenience. S4LP is closed under substitutions of proof polynomials for proof variables and
formulas for sentence variables. S4LP also enjoys the deduction theorem.

Consider a constant specification CS = {c1:A1, c2:A2, . . .} (where each Ai is an axiom from I-IV
and each ci is a proof constant). By S4LPCS we mean a subsystem of S4LP where R2 is restricted
to producing formulas from a given CS only. In particular, S4LP∅ is the subsystem of S4LP without
R2.

Lemma 1. The principle of positive introspection

t:F→2t:F

is provable in S4LP∅ (hence in S4LPCS for any constant specification CS).

Proof.

t:F→ !t:(t:F ) by LP2
!t:(t:F )→2t:F by C1
t:F→2t:F by propositional logic

2

Lemma 2. S4LPCS ` F ⇔ S4LP∅ `
∧ CS→F .

Proof. The direction “⇐” is straightforward. “⇒” is proved by induction on the derivation of
F in S4LPCS. The only interesting case is the rule of necessitation R3. If F is obtained by the
necessitation rule R3, i.e., F is 2G and S4LPCS ` G, then by the induction hypothesis, S4LP∅ `∧ CS→G. By S4 reasoning,

S4LP∅ ` 2
∧
CS→2G .

By positive introspection (Lemma 1) and some trivial S4 reasoning,

S4LP∅ `
∧
CS→2

∧
CS ,

hence S4LP∅ `
∧ CS→F . 2

Lemma 3. For any formula F, there are proof polynomials upF (x) and downF (x) such that S4LP
proves

1. x:F→upF (x):2F
2. x:2F→downF (x):F .

Proof.

1. x:F→2F by C1
a:(x:F→2F ) specifying constant a, by R2
!x:(x:F )→(a·!x):2F by LP1 and propositional logic
x:F→ !x:(x:F ) by LP2
x:F→(a·!x):2F by propositional logic

It suffices now to set upF (x) to a·!x with a:(x:F→2F ).

284



2. 2F→F by E3
b:(2F→F ) specifying constant b, by R2
x:2F→(b · x):F by LP1 and propositional logic

It suffices now to set downF (x) to b · x with b:(2F→F ). 2

Proposition 3. (Constructive necessitation) If S4LP ` F , then S4LP ` p:F for some proof poly-
nomial p.

Proof. Induction on a derivation of F . Base: F is an axiom. Then use constant specification
rule. In this case, p is an arbitrary proof constant and p:F is included in the constant specification
corresponding to this derivation. Induction step: Let F be obtained from X→F and X by modus
ponens. By the induction hypothesis, ` s:(X→F ) and ` t:X, hence by LP1, ` (s·t):F and hence
p is s·t. If F is obtained by R2, then F is c:A for some constant c and axiom A. Use the axiom
LP2 to derive !c:(c:A), i.e., !c:F . Here p is !c. If F is obtained by R3, then F = 2G and ` G.
By the induction hypothesis, ` t:G for some proof polynomial t. Use Lemma 3.1 to conclude that
` upG(t):2G, and put p = upG(t).

Note that the proof polynomial p is always a ground term built from proof constants by appli-
cations and proof checker operations only. Moreover, the presented derivation of p:F does not use
rule R3. 2

The necessitation rule R3 is derivable from the rest of S4LP. Indeed, if ` F then, by Propo-
sition 3, ` p:F for some proof polynomial p. By C1, ` 2F . However, the rule of necessitation
is not redundant in S4LPCS for finite constant specifications. To emulate the rule of necessitation
one needs to apply constructive necessitation to the unbounded set of theorems of S4LPCS, which
requires an unbounded set of constant specifications.

The following property of S4LP is a generalization of constructive necessitation (Proposition 3).
It is the explicit analogue of the rule

A1, . . . , Ak, 2B1, . . . , 2Bn ` F

2A1, . . . ,2Ak, 2B1, . . . ,2Bn ` 2F

which holds in any normal modal logic containing K4.

Proposition 4. (Lifting) If A1, . . . , Ak, y1 :B1, . . . , yn :Bn ` F , then for some proof polynomial
p(x1, . . . , xk, y1, . . . , yn)

x1:A1, . . . , xk:Ak, y1:B1, . . . , yn:Bn ` p(x1, . . . , xk, y1, . . . , yn):F .

Proof. Similar to Proposition 3 with two new base clauses. If F is Ai, then xi can be taken as p.
If F is yj:Bj , then p is equal to !yj . 2

Proposition 5. (Internalization) If A1, . . . , Ak ` F , then for some proof polynomial p(x1, . . . , xk)

x1:A1, . . . , xk:Ak ` p(x1, . . . , xk):F.

Proof. A special case of Proposition 4. 2

The internalization property states that any derivation in S4LP can be internalized as a proof
polynomial and verified in S4LP itself.

Note that axiom C1 in S4LP can be replaced by the explicit positive introspection principle
t:F →2t:F . The new system will coincide with S4LP modulo replacement of some constants by
ground proof polynomials.
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5 Introducing explicit negative introspection

As was noticed earlier, the explicit negative introspection principle

¬t:F→2¬t:F

holds when we interpret 2 as mathematical provability, thus suggesting it as an epistemic principle.

Definition 6. The system S4LPN has the same syntax, axioms, and rules as S4LP with one addi-
tional axiom:

C2. ¬t:F→2¬t:F (explicit negative introspection)

S4LPNCS is S4LPN with the rule R2 limited to a given constant specification CS. S4LPN∅ is S4LPNCS

with the empty constant specification.

Analogues of Lemmas 1, 2, and 3 as well as Propositions 3, 4, and 5 hold for S4LPN as well.

Lemma 4. The principle of decidability of evidence

2t:F ∨2¬t:F

is provable in S4LPN (hence in S4LPNCS for any constant specification CS).

Proof.
t:F→2t:F positive introspection
¬t:F→2¬t:F by negative introspection
(t:F ∨ ¬t:F )→(2t:F ∨2¬t:F ) by propositional logic
2t:F ∨2¬t:F by propositional logic

2

Alternatively, S4LPN can be axiomatized over S4LP by the principle of decidability of evidence
modulo replacement of some constants by ground proof polynomials.

6 Models

We work with semantics that uses the idea, which can be traced back to Mkrtychev [35] and
Fitting ([17]), of augmenting Boolean or Kripke models with an evidence function, which assigns
“admissible evidence” terms to a statement. The statement t:ϕ holds in a given world u iff both of
the following conditions are met:

1) t is an admissible evidence for ϕ in u;
2) ϕ holds in all worlds accessible from u.

One more idea came from the paper [6] which suggested taking an “evidence accessibility” relation
different from the knowledge accessibility relation, thus semantically separating explicit knowledge
from usual knowledge.

A frame is a structure (W,R, Re), where W is a non-empty set of states (possible worlds), R is
a binary accessibility relation on W , and Re is a binary evidence accessibility relation on W . For
our purposes, the relations R and Re can be taken as reflexive and transitive. Re should contain
but not necessarily coincide with R.

Given a frame (W,R,Re), a possible evidence function E is a mapping from worlds and justifi-
cation terms to sets of formulas. We can read F ∈ E(u, t) as “F is one of the formulas for which
t serves as possible evidence in world u.” An evidence function must obey conditions that respect
the intended meanings of the operations on justification terms (i.e., proof polynomials).
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Definition 7. E is an evidence function on (W,R, Re) if for all proof polynomials s and t, for all
formulas F and G, and for all u, v ∈ W , each of the following hold:

1. Monotonicity: uRev implies E(u, t) ⊆ E(v, t).

2. Application: F→G ∈ E(u, s) and F ∈ E(u, t) implies G ∈ E(u, s·t).
3. Inspection: F ∈ E(u, t) implies t:F ∈ E(u, !t).

4. Sum: E(u, s) ∪ E(u, t) ⊆ E(u, s + t).

A model is a structure M = (W,R, Re, E , ° ) where (W,R, Re) is a frame with an evidence
function E on (W,R,Re) and ° is an arbitrary mapping from sentence variables to subsets of W .

Given a model M = (W,R, Re, E , °), the forcing relation ° is extended from sentence variables
to all formulas by the following rules. For each u ∈ W :

1. ° respects Boolean connectives (u°F ∧G iff u°F and u°G, u°¬F iff u 6°F , etc.).

2. u°2F iff v°F for every v ∈ W with uRv.

3. u° t:F iff F ∈ E(u, t) and v°F for every v ∈ W with uRev.

We say F is true at a world u ∈ W if u°F ; otherwise, F is false at u. Informally speaking, t:F is
true in a given world u iff t is an acceptable evidence term for F in u and F is true in all worlds
v accessible from u via the evidence accessibility relation Re. A formula F is true in a model if
F is true at each world of the model; F is valid if F is true in every model. Given a constant
specification CS, a model M meets CS if M°c:A whenever c:A ∈ CS.

The following lemma is a straightforward corollary of the definitions:

Lemma 5. u° t:F and uRev yield v° t:F .

The above models with singleton W ’s are called Mkrtychev models (M-models, for short). M-
models were introduced in [35] under the name of pre-models. The logic of proofs LP was shown
in [35] to be sound and complete with respect to M-models.

We call models with R = Re Fitting models (F-models). They were first introduced in [17]
under the name weak models as an epistemic semantics for the logic of proofs LP. In [9, 18], it was
shown that F-models work for S4LP as well.

Finally, we call arbitrary models of the above class AF-models. AF-models were introduced in [6]
in a general setting for several agents where the need to separate knowledge and explicit knowledge
became apparent. AF-models work for a wide class of systems, including the ones mentioned above
(LP, S4LP, and S4LPN).

Theorem 1. For any given constant specification CS, the logic S4LPCS is sound and complete with
respect to AF-models that meet CS.

Proof. Soundness is straightforward. S4-axioms and rules hold because an AF-model with respect
to the modal language is the usual Kripke model for S4. LP axioms and rules are guaranteed by
the properties of the evidence function E . Let us check the connection axiom t:F →2F . Suppose
u° t:F and uRv. Then uRev, since R ⊆ Re, and v°F . Hence, u°2F .

Completeness is established by the standard maximal consistent set construction. First of all,
we define the canonical model (W,R, E , ° ) for S4LPCS. Call a set S of formulas in the language of
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S4LPCS consistent if for no F1, . . . , Fn ∈ S, ¬(F1 ∧ . . . ∧ Fn) is provable in S4LPCS. Consistent sets
extend to maximal consistent sets by the standard Lindenbaum construction. W is the collection of
all maximal consistent sets. Define Γ] as {2F | 2F ∈ Γ} and Γ[ as {t:F | t:F ∈ Γ}. The accessibility
relation R, the evidence accessibility relation Re and the evidence function E are defined by

ΓR∆ iff Γ] ⊆ ∆ ,

ΓRe∆ iff Γ[ ⊆ ∆ ,

and
F ∈ E(Γ, t) iff t:F ∈ Γ .

Obviously, Re extends R. Indeed, let ΓR∆ and t:F ∈ Γ hold. Then 2t:F ∈ Γ, since S4LPCS ` t:
F →2t:F . By ΓR∆, we conclude that 2t:F ∈ ∆. Since S4LPCS ` 2t:F → t:F , t:F ∈ ∆ as well. So,
R ⊆ Re. Hence, (W,R, Re) is an S4LP-frame.

Let us check the evidence function properties.
Monotonicity : F ∈ E(Γ, t) yields t :F ∈ Γ. If ΓRe∆, then t :F ∈ ∆, by the definition of

Re. By the definition of E , F ∈ E(∆, t). Application: F →G ∈ E(Γ, s) and F ∈ E(G, t) implies
s:(F →G) ∈ Γ and t:F ∈ Γ. Since s:(F →G)→ (t:F → (s·t):G) ∈ Γ and Γ is closed under modus
ponens (as a maximal consistent set of formulas), (s ·t):G ∈ Γ. Hence, G ∈ E(u, s ·t). A similar
argument proves inspection and sum.

Finally, for each propositional letter p, define

Γ°p iff p ∈ Γ .

Lemma 6. (Truth Lemma) For each formula F and each Γ ∈ W ,

Γ°F iff F ∈ Γ .

Proof. Induction on F . The base case is given by the definitions and the cases of Boolean
connectives are standard.

Case: F is 2X.
If 2X ∈ Γ, then 2X ∈ ∆ for each ∆ such that ΓR∆. Since S4LPCS ` 2X→X, X ∈ ∆. By

the induction hypothesis, ∆°X, hence, Γ°2X.
If 2X 6∈ Γ, then Γ] ∪ {¬X} is a consistent set. If it were not consistent, then S4LPCS `

2Y1 ∧ 2Y2 ∧ . . . ∧ 2Yn →X for some 2Y1, 2Y2, . . . , 2Yn ∈ Γ. By S4 reasoning, S4LPCS ` 2Y1 ∧
2Y2 ∧ . . .∧2Yn→2X, hence 2X ∈ Γ, a contradiction. So, Γ] ∪ {¬X} is consistent. Take ∆ to be
a maximal consistent extension of Γ] ∪ {¬X}. It is apparent that ∆ ∈ W , ΓR∆ and X 6∈ ∆. By
the definition of a model, ∆ 6°X, hence Γ 6°2X.

Case: F is t:X.
Let t:X ∈ Γ. Then X ∈ E(Γ, t). By the definition of Re, t:X ∈ ∆ for each ∆ such that ΓRe∆.

Since S4LPCS ` t:X→X, X ∈ ∆ as well. By the induction hypothesis, ∆°X. By the definition of
forcing at node Γ, Γ° t:X.

If Γ° t:X, then X ∈ E(Γ, t), hence t:X ∈ Γ, by the definition of E . 2

To conclude the proof of Theorem 1, suppose S4LPCS 6` F . Then {¬F} is a consistent set. Take
its maximal consistent extension Γ. Then F 6∈ Γ and, by the Truth Lemma, Γ 6°F in the canonical
model. 2
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Comment 1. The completeness of S4LP with respect to F-models was proved in [18], where the
canonical model W , R, E and ° were chosen as above and Re was defined as Re = R. The
completeness proof there is essentially the same as in Theorem 1 with the following two minor
deviations.

1. To establish the monotonocity property of E , assume F ∈ E(Γ, t). Then t:F ∈ Γ and 2t:F ∈ Γ
by positive introspection in S4LPCS. By the definition of Re as R, 2t:F ∈ ∆ for each ∆ such that
ΓRe∆. By reflexivity, t:F ∈ ∆. Hence, F ∈ E(∆, t).

2. The case t:X ∈ G in the Truth Lemma. By the definition of E , X ∈ E(Γ, t). Take ∆ such
that ΓRe∆, i.e., ΓR∆. By positive introspection, 2t :X ∈ Γ, hence 2t :X ∈ ∆. By reflexivity,
t:X ∈ ∆ and X ∈ ∆. By the induction hypothesis, ∆°X. By the definition of forcing, Γ° t:X.

Theorem 2. For any constant specification CS, S4LPNCS is sound and complete with respect to
AF-models with symmetric Re meeting CS.

Proof. Let (W,R,Re, E ,° ) be an AF-model from the formulation of the theorem. By the defini-
tions, R ⊆ Re, R is reflexive and transitive, whereas Re is reflexive, symmetric, and transitive, i.e.,
Re is an equivalence relation on W that extends R.

The soundness portion can be established by a straightforward induction on derivations in
S4LPNCS. All the cases but C2 follow from AF-soundness of S4LP, cf. Theorem 1. Let us check
C2. Suppose u°¬t:F , and pick v such that uRv. Suppose v 6°¬t:F , i.e., v ° t:F . Since vReu, by
Lemma 5, u° t:F – a contradiction. Actually, we have shown the stability property of AF-models
of the above kind: each formula t:F either holds at all worlds of a given equivalence class with
respect to Re, or it does not hold in all worlds of this class.

The completeness portion is proved by the maximal consistent sets construction. Define the
canonical model for S4LPNCS. Call a set S of formulas in the language of S4LPNCS consistent if
for no F1, . . . , Fn ∈ S, is ¬(F1 ∧ . . . ∧ Fn) provable in S4LPNCS. Consistent sets extend to maximal
consistent sets by the Lindenbaum construction. W is the collection of all maximal consistent sets.
As before, Γ] = {2F | 2F ∈ Γ} and Γ[ = {t:F | t:F ∈ Γ}. Define R, Re, and E by

ΓR∆ iff Γ] ⊆ ∆ ,

ΓRe∆ iff Γ[ = ∆[ ,

and
F ∈ E(Γ, t) iff t:F ∈ Γ .

Finally, for each propositional letter p, define

Γ°p iff p ∈ Γ .

Let us check that (W,R, Re) is an S4LPN-frame. Clearly, R is reflexive and transitive, and Re is
an equivalence relation. Furthermore, R ⊆ Re. Indeed, let ΓR∆ and t:F ∈ Γ. Since S4LPNCS `
t:F → 2t:F , the latter formula is in Γ, hence 2t:F ∈ Γ as well. Since ΓR∆, 2t:F ∈ ∆. Since
S4LPNCS ` 2t:F → t:F , t:F ∈ ∆. So, Γ[ ⊆ ∆[. Let t:F 6∈ Γ. By maximality, ¬t:F ∈ Γ. Since
S4LPNCS ` ¬t :F → 2¬t :F , the latter formula is in Γ, hence 2¬t :F ∈ Γ as well. Since ΓR∆,
2¬t:F ∈ ∆, hence ¬t:F ∈ ∆ and t:F 6∈ ∆. Therefore, Γ[ ⊇ ∆[ and Γ[ = ∆[.

Let us check the properties of the evidence function.
Monotonicity : Let F ∈ E(Γ, t) and ΓRe∆. By the definition of E(Γ, t), t:F ∈ Γ. Hence t:F ∈ Γ,

since G[ = ∆[. So, F ∈ E(Γ, t). Application, inspection, and sum follow immediately from the
definitions.
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Lemma 7. (Truth Lemma) For each formula F ,

Γ°F iff F ∈ Γ .

Proof. Induction on F . The base case is given by the definitions and the cases of Boolean
connectives are standard.

Case: F is 2X is treated similarly to Lemma 6.
Case: F is t:X.
If t:X ∈ Γ, then X ∈ E(Γ, t). Let ΓRe∆. By the definition of Re, t:X ∈ ∆. Since S4LPNCS ` t:

X→X, X ∈ ∆. So, by the induction hypothesis, ∆°X. By the definitions, Γ° t:X.
If Γ° t:X, then X ∈ E(Γ, t), hence t:X ∈ Γ, by the definition of E . 2

A standard argument concludes the proof of the theorem. Suppose S4LPNCS 6` F . Then the set
{¬F} is consistent and let Γ be its maximal consistent extension. Then F 6∈ Γ and, by Lemma 7,
Γ 6°F . 2

The following stronger form of the completeness theorem holds:

Theorem 3. For each F such that S4LPNCS 6` F , there is an AF-model M̂ that meets CS such that
the evidence accessibility relation in M̂ is total and F is false in M̂ .

Proof. Take the canonical model for S4LPNCS and a world Γ0 such that Γ0 6° F . Consider the
equivalence class Ŵ with respect to Re such that Γ0 ∈ Ŵ . Since R ⊆ Re, Ŵ is closed under
accessibility relation R: if Γ ∈ Ŵ and ΓR∆, then ∆ ∈ Ŵ . Let R̂, R̂e, Ê , and °̂ be R, Re, E , and
° restricted to Ŵ , respectively. The resulting structure is an AF-model

M̂ = (Ŵ , R̂, R̂e, Ê , °̂ )

with the evidence accessibility relation R̂e total on its domain Ŵ . Indeed, we have already checked
that (Ŵ , R̂, R̂e) is an AF-frame. The properties of the evidence function Ê are nothing but the
special cases of the corresponding properties for E . Furthermore, for each formula X and each
Γ ∈ Ŵ ,

Γ°X iff Γ °̂X ,

since Ŵ is closed with respect to both R and Re.
Since Γ0 6°F , Γ0 6 °̂ F as well. This concludes the proof of Theorem 3. 2

7 Arithmetical semantics for S4LP and S4LPN

Arithmetical semantics for S4LP and S4LPN is given by interpreting 2F via the strong provability
operator

F is true and provable in Peano Arithmetic PA,

together with interpreting t:F as before:

t is a proof of F in Peano Arithmetic PA.

Using the strong provability operator to obtain S4-compliant logics has been a well-established
tradition in provability logic (cf. [1, 13, 14, 25, 30, 31, 37, 38]).
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Theorem 4. (Arithmetical soundness of epistemic logic with justification) Let CS be a finite con-
stant specification. If S4LPNCS ` F , then F is true under any arithmetical interpretation which
translates 2F as strong provability in PA and t:F as “t is a proof of F in PA.”

Proof. By induction on F . The validity of LP axioms and rules was shown in [3, 4]. The validity
of S4 axioms and rules under the strong provability interpretation was shown in many sources, cf.
[14].

The validity of the connection axiom t:F →2F is a combination of the validity of the explicit
reflection t:F →F , which is an LP axiom, already checked, and a first order tautology Prf (t, ϕ)→
∃xPrf (x, ϕ), where Prf (x, y) is an arithmetical formula for x is a proof of y.

Finally, the negative introspection axiom ¬t:F →2¬t:F is a special case of σ-completeness of
the arithmetic, cf. [14]. 2

An arithmetically complete system GrzLPN of strong provability with proofs can be axiomatized
by adding to S4LP the modal axiom by Grzegorczyk 2(2(F→2F )→F )→F . Models for GrzLPN
are F-models with reflexive partially ordered frames. This can be established by a combination of
the methods from [9, 37, 38].
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[5] S. Artemov. Kolmogorov’s and Gödel’s approach to intuitionistic logic: current developments.
Russian Mathematical Surveys, v. 59, issue 2, pp. 203–229, 2004.

[6] S. Artemov. Evidence-based common knowledge. Technical Report TR-2004018, CUNY Ph.D.
Program in Computer Science, revised version, 2005.
http://www.cs.gc.cuny.edu/tr/techreport.php?id=140.

291



[7] S. Artemov and L. Beklemishev. Provability logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, 2nd ed., v. 13, pp. 229–403, Kluwer, Dordrecht, 2004.

[8] S. Artemov, E. Kazakov and D. Shapiro. On logic of knowledge with justifications. Technical
Report CFIS 99-12, Cornell University, 1999.
http://www.cs.gc.cuny.edu/∼sartemov/publications/S5LP.ps.

[9] S. Artemov and E. Nogina. Logic of knowledge with justifications from the provability perspective.
Technical Report TR-2004011, CUNY Ph.D. Program in Computer Science, 2004.
http://www.cs.gc.cuny.edu/tr/techreport.php?id=106.

[10] V. Brezhnev. On explicit counterparts of modal logics. Technical Report CFIS 2000-05, Cornell
University, 2000.

[11] V. Brezhnev. On the logic of proofs. In Proceedings of the Sixth ESSLLI Student Session,
Helsinki, pp. 35–46, 2001.
http://www.helsinki.fi/esslli/.

[12] L. Bonjour. The Coherence Theory of Empirical Knowledge. Philosophical Studies, v. 30,
pp. 281–312. Reprinted in Contemporary Readings in Epistemology, M.F. Goodman and
R.A. Snyder (eds). Prentice Hall, pp. 70–89, 1993.

[13] G. Boolos, The Unprovability of Consistency: An Essay in Modal Logic, Cambridge University
Press, 1979.

[14] G. Boolos, The Logic of Provability, Cambridge University Press, 1993.

[15] D. de Jongh and G. Japaridze. The Logic of Provability. Ed. S. Buss, Handbook of Proof
Theory. Studies in Logic and the Foundations of Mathematics, v. 137., Elsevier, pp. 475–546,
1998.

[16] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning About Knowledge, MIT Press, 1995.

[17] M. C. Fitting. A semantics for the logic of proofs. Technical Report TR-2003012, CUNY
Ph.D. Program in Computer Science, 2003.

[18] M. C. Fitting. Semantics and Tableaus for LPS4. Technical Report TR-2004016, CUNY Ph.D.
Program in Computer Science, 2004.

[19] M.C. Fitting. A logic of explicit knowledge. To appear in Logica 2004 Proceedings.

[20] M. C. Fitting. The logic of proofs, semantically. Annals of Pure and Applied Logic, v. 132,
pp. 1–25, 2005.

[21] D.M. Gabbay. Labelled Deductive Systems, Oxford University Press, 1994.

[22] E. Gettier. Is Justified True Belief Knowledge? Analysis, v. 23, pp. 121–123, 1963
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