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ABSTRACT
Within the context of extensive-form (or dynamic) games,
we use choice frames to represent the initial beliefs of a
player as well as her disposition to change those beliefs when
she learns that an information set of hers has been reached.
As shown in [5], in order for the revision operation to be
consistent with the AGM postulates [1], the player’s choice
frame must be rationalizable in terms of a total pre-order
on the set of histories. We consider four properties of choice
frames and show that, together with the hypothesis of a
common prior, are necessary and sufficient for the existence
of a plausibility order that rationalizes the epistemic state
(that is, initial beliefs and disposition to revise those beliefs)
of all the players. The plausibility order satisfies the prop-
erties introduced in [6] as part of a new definition of perfect
Bayesian equilibrium for dynamic games. Thus the present
paper provides epistemic foundations for that solution con-
cept.
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Game Theory

Keywords
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1. INTRODUCTION
In a dynamic (or extensive-form) game, a player might

find herself having to move at an information set that - ac-
cording to her prior beliefs - should not have been reached.

∗An extended version of this paper is available as Perfect
Bayesian equilibrium. Part II: epistemic foundations, at
http://www.econ.ucdavis.edu/faculty/bonanno/wpapers.htm.
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In such a case the player will have to revise her prior be-
liefs by formulating a hypothesis about the past moves of
other players and a prediction about future moves by her-
self and the other players. How players revise their beliefs
during the play of a game is of central importance in any
attempt to provide a solution concept for dynamic games.
In [6] we introduced a general notion of perfect Bayesian
equilibrium, which can be applied to arbitrary extensive-
form games and is intermediate between subgame-perfect
equilibrium and sequential equilibrium.1 In this paper we
provide an epistemic foundation of perfect Bayesian equilib-
rium based on the AGM theory of belief revision proposed
by Alchourrón, Gärdenfors and Makinson [1]. We use choice
frames to represent the initial beliefs of a player as well as
her disposition to change those beliefs when she learns that
an information set of hers has been reached. As shown in
[5], in order for the revision operation to be consistent with
the AGM postulates, the player’s choice frame must be ra-
tionalizable in terms of a total pre-order on the set of his-
tories. We consider four properties of choice frames that
reflect the structure of extensive-form games and show that,
together with the hypothesis of a common prior, are neces-
sary and sufficient for the existence of a plausibility order
that rationalizes the epistemic state (that is, initial beliefs
and disposition to revise those beliefs) of all the players. The
plausibility order satisfies the properties introduced in [6] as
part of the definition of perfect Bayesian equilibrium.

2. BELIEF REVISION IN GAMES
Choice frames can be used in dynamic or extensive-form

games to represent, for every player, her initial beliefs as well
as her disposition to change those beliefs when informed that
it is her turn to move.

Definition 1. A choice frame is a triple 〈Ω, E , f〉 where

• Ω is a non-empty set of states. Subsets of Ω are called
events.

• E ⊆ 2Ω is a collection of events such that ∅ /∈ E and
Ω ∈ E .

• f : E → 2Ω is a function that associates with every
event E ∈ E an event f(E) satisfying the following
properties: (1) f(E) ⊆ E and (2) f(E) �= ∅.

1The notion of subgame-perfect equilibrium was introduced
by Selten [21], while sequential equilibrium was introduced
by Kreps and Wilson [15].
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H set of histories
D set of decision histories
Di set of decision histories of player i
Ii(h) information set of player i that contains h ∈ Di

A(h) set of actions available at h ∈ D
ha history that results from adding to h

action a ∈ A(h)
ι(h) player who moves at history h ∈ D

Table 1: Summary of notation

In rational choice theory a set E ∈ E is interpreted as
a set of available alternatives and f(E) is interpreted as
the subset of E which consists of the chosen alternatives
(see, for example, [20] and [22]).2 In our case, we think
of the elements of E as potential items of information and
the interpretation of f(E) is that, if informed that event E
has occurred, the agent considers as doxastically possible all
and only the states in f(E).3 The set f(Ω) is interpreted
as the set of states that are initially considered doxastically
possible (that is, before the receipt of information).

Note that in the rational choice literature it is common to
impose some structure on the collection of events E (for ex-
ample, that it be closed under finite unions or that it be an
algebra: see [16, 20, 22]). On the contrary, we allow E to be
an arbitrary subset of 2Ω and typically think of E as contain-
ing only a small number of events. This is characteristically
the case in extensive-form games, as shown below.

We make use of the history-based definition of extensive-
form game, which is reviewed in Appendix A. For simplicity,
we restrict attention to games without chance moves. Table
1 summarizes the notation. For example, in the extensive-
form shown in Figure 1, the set of decision histories of player
4 is D4 = {acf, ade, adf, b} and player 4 has two informa-
tion sets (represented by rounded rectangles): I4(acf) =
I4(ade) = {acf, ade} and I4(adf) = I4(b) = {adf, b}.

Given an extensive form, we associate with every player i a
choice frame 〈Ω, Ei, fi〉 as follows: Ω = H (recall that H de-
notes the set of histories), E ∈ Ei if and only if either E = H
or E consists of an information set of player i together with
all the continuation histories, as explained below. Recall
that if h is a decision history of player i (h ∈ Di), player i’s
information set that contains h is denoted by Ii(h). We shall

denote by
−→
Ii (h) the set Ii(h) together with the continuation

histories:4

2Choice functions have also been used to provide a semantics
for non-monotonic reasoning: see [16]
3In order to avoid ambiguity, we use the expression ‘doxas-
tically possible’ to distinguish between possibility in terms
of information (or “objective” possibility) and possibility in
terms of beliefs (or “subjective”possibility or “doxastic”pos-
sibility). Thus a state ω may be possible according to the
information received (ω ∈ E) but may be ruled out by the
agent’s beliefs (ω /∈ f(E)); the doxastically possible states
- when informed that E - are precisely those in f(E). In
a framework where beliefs are represented by a probability
measure, a state is doxastically possible if and only if it is
assigned positive probability.
4 We call

−→
Ii (h) the augmented information set of player i at

decision history h ∈ Di. Because of the property of perfect
recall (see Appendix A), for every player i ∈ N and for every

h, h′ ∈ Di, either
−→
Ii (h) ∩ −→Ii (h

′) = ∅ or
−→
Ii (h) ⊆ −→

Ii (h
′)

or
−→
Ii (h

′) ⊆ −→
Ii (h). That is, any two different augmented

Figure 1: An extensive-form game.

−→
Ii (h) = {x ∈ H : ∃h′ ∈ Ii(h) such that h′ is a prefix of x}.

For example, in the extensive form of Figure 1, I4(b) =

{adf, b} and
−→
I4(b) = {adf, b, adfm, adfn, bm, bn}.

Thus we define

Ei = {H} ∪ {−→Ii (h) : h ∈ Di}.
In the extensive form of Figure 1, E4 = {H, E, F}, where

E = {acf, ade, acfg, acfh, adeg, adeh} and
F = {adf, b, adfm, adfn, bm, bn}.

Finally, the function fi provides initial beliefs as well as
revised beliefs about past and future moves. For example,
in the extensive form of Figure 1 possible beliefs for Player
4 are as follows: f4(H) = {a, ac, ace}, f4(E) = {acf, acfh}
and f4(F ) = {b, bm}, where E and F are as given above.
The interpretation of this is that Player 4 initially believes
that Player 1 will play a, Player 2 will follow with c and
Player 3 with e (so that Player 4 does not expect to be
asked to make any choices; all this is encoded in f4(H)).
If informed that she is at her information set on the left,
Player 4 would continue to believe that Player 1 played a
and Player 2 followed with c, but she would now believe that
Player 3 chose f and she herself plans to choose h (this is
encoded in f4(E)). On the other hand, if informed that she
is at her information set on the right, Player 4 would believe
that Player 1 played b and she herself plans to choose m
(this is encoded in f4(F )).

We shall make the following natural assumptions about
each player’s beliefs. Let 〈H, Ei, fi〉 be the choice frame of
player i representing the player’s initial beliefs and dispo-
sition to change those beliefs. We assume that, for every
E ∈ Ei and for every h, h′ ∈ H,

information sets of the same player are either disjoint or one
is a subset of the other. Thus if E, F ∈ Ei are such that
E ∩ F �= ∅, then either E ⊆ F or F ⊆ E. Furthermore,

if h, h′ ∈ Di and h is a prefix of h′, then
−→
Ii (h

′) ⊆ −→
Ii (h).

Hence, during any play of the game, player i never receives
contradictory information; in fact if information F follows
information E then F ⊆ E, that is, F is a refinement of E.
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If h ∈ fi(E) and h′ ∈ E is a prefix of h (A1)
then h′ ∈ fi(E).

If h ∈ Di ∩ fi(E) then ∃a ∈ A(h) (A2)
such that ha ∈ fi(E).

If h ∈ Di, h, ha ∈ fi(E) and h′ ∈ Ii(h) ∩ fi(E) (A3)
then h′a ∈ fi(E).

Assumption A1 says that the player’s beliefs are closed un-
der prefixes: if, when informed that event E has occurred,
the player considers history h doxastically possible, and his-
tory h′ is a prefix of h (thus h′ is a necessary condition for h
to be reached) then she also considers history h′ doxastically
possible, as long as h′ is compatible with the information re-
ceived (that is, as long as h′ ∈ E).

Assumption A2 says that if h is a decision history of player
i (h ∈ Di), which she considers doxastically possible when
informed that E (h ∈ fi(E)), then she also considers ha
doxastically possible for some action a available at h. The
interpretation of this is that the player has a belief, that is
a plan, about how she would play at h.5

Finally, Assumption A3 states that the player’s beliefs
about her own choices respect her information constraints, in
the sense that if she considers histories h and ha doxastically
possible (where h is a decision history of hers and a an action
available at h) and h′ belongs to the same information set as
h (h′ ∈ Ii(h)), then if she considers h′ doxastically possible
then she must also consider h′a doxastically possible. The
reason for this is that - when taking action a - the player
does not know whether she is taking that action at history h
or at history h′. Thus if she considers h and h′ doxastically
possible then she can view ha as doxastically possible if and
only if she views h′a as doxastically possible.

Definition 2. The choice frame 〈H, Ei, fi〉 is rationalizable
if there exists a total pre-order6 �i on H such that, ∀E ∈ Ei,
fi(E) = {h ∈ E : h �i h′, ∀h′ ∈ E}).

The interpretation of h �i h′ is that player i judges history h
to be at least as plausible as h′. Thus if her epistemic state is
captured by a choice frame 〈H, Ei, fi〉 which is rationalizable,
then - when she receives information E - player i considers a
state doxastically possible if and only if that state is a most
plausible state within the set E. An item of information
E ∈ Ei lists all the histories that are still possible and fi(E)
gives the histories that player i considers most plausible,
given that information. Since, by definition of choice frame,
H ∈ Ei, the set fi(H) gives player i’s initial beliefs, that is,
her beliefs before the game is played, while for E ∈ Ei\{H},
fi(E) gives player i’s revised beliefs if informed that E has
occurred.

It is shown in [5] that rationalizability of a choice frame is
equivalent to compatibility of the associated belief revision

5The view that “strategies as plans cannot be anything but
beliefs of players about their own behavior” is also adopted
in [3].
6A binary relation � ⊆ H ×H is a total pre-order if it is
complete (∀h, h′ ∈ H either h � h′ or h′ � h) and transitive
(∀h1, h2, h3 ∈ H if h1 � h2 and h2 � h3 then h1 � h3).

policy with the AGM postulates for belief revision [1].7 8 9

Remark 1. A choice frame 〈H, Ei, fi〉 of player i con-
tains both (conditional) beliefs about the past and (condi-
tional) beliefs about the player’s own future choices. If the
choice frame is rationalizable by the total pre-order �i, then
- given a decision history h of player i and the corresponding
information set Ii(h) - player i’s beliefs about past moves are
given by the set {x ∈ Ii(h) : x �i y, ∀y ∈ Ii(h)}, that is, the
most plausible histories in Ii(h). Furthermore, by Assump-
tions A2 and A3, for every h ∈ Di there exists at least one
plausibility preserving action at h.10 The plausibility pre-
serving actions at h represent the beliefs - and thus plans -
of player i about her own choice at h.

Let 〈H, Ei, fi〉 be a choice frame of player i. The following
property is known as Arrow’s Axiom (see, for example, [22],
p. 25 and [16], p. 251): ∀E, F ∈ Ei

if E ⊆ F and fi(F ) ∩ E �= ∅ then fi(E) = fi(F ) ∩ E. (AA)

For simplicity, we shall restrict attention to extensive forms
that satisfy the following condition: ∀i ∈ N,∀h ∈ D,∀a ∈
A(h),

if h ∈ Di then ha /∈ Di. (C)

Condition C rules out situations where two consecutive ac-
tions are taken by the same player. Thus if, along a possible
play of the game, a player takes several actions in a sequence
then between any two of them there is an action taken by
another - possibly fictitious - player.11

7Because, typically, the set Ei of possible items of infor-
mation contains only few elements, an interpretation of the
frame yields only a partial belief revision function. “Com-
patibility with the AGM postulates”means that the partial
belief revision function associated with an arbitrary interpre-
tation of the frame can be extended to a full belief revision
function that satisfies the AGM postulates (for details see
[5]).
8Rationalizable choice frames provide a semantics for quali-
tative belief revision. A semantics for belief revision in terms
of plausibility measures is provided in [9, 10].
9It should be noted that the AGM theory deals with ‘one-
stage’ belief revision, while in extensive-form games a player
might receive information sequentially (when one of her in-
formation sets is preceded by another). Thus, in general, in
extensive-form games one needs to consider what has been
called in the literature ‘iterated’ belief revision. As noted
in Footnote 4, because of the property of perfect recall, if a
player receives two sequential pieces of information, E and
F , then the latter is a refinement of the former (that is,
F ⊆ E). In all the theories of iterated belief revision that
have been proposed (see, for instance [7, 8, 12, 17]) it is
postulated that when information E precedes information
F and the latter is a refinement of the former, then the
revised beliefs after the sequence 〈E, F 〉 are the same as
in the (possibly hypothetical) case where information F is
received without it being preceded by E. Our analysis im-
plicitly makes use of this assumption about iterated belief
revision.

10We say that action a ∈ A(h) is plausibility preserving at h
if h is as plausible as ha, that is, if h ∼i ha, where h ∼i ha
is a short-hand for h �i ha and ha �i h.

11If an extensive form does not satisfy Condition C then one
can transform it into one that does, by adding a fictitious
player between two consecutive actions of the same player
and assigning to the fictitious player only one action. Such
a trasformation would be ”inessential” in the sense that, for
example, it would not affect the set of sequential equilibria.
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The proofs of the following propositions are given in Ap-
pendix B.

Proposition 1. Fix an extensive form that satisfies Con-
dition C. Let 〈H, Ei, fi〉 be a choice frame representing player
i’s initial beliefs and disposition to change those beliefs. Then
the following are equivalent:

(a) 〈H, Ei, fi〉 satisfies Arrow’s Axiom and Assumptions
A1-A3.

(b) There is a total pre-order �i that rationalizes 〈H, Ei, fi〉
and satisfies the following properties:

PL1. ∀h ∈ D, ∀a ∈ A(h), h �i ha.
PL2i. ∀h ∈ Di, (1) ∃a ∈ A(h) such that ha �i h and,

(2) ∀a ∈ A(h), if ha �i h then h′a �i h′,
∀h′ ∈ Ii(h).

Let {〈H, Ei, fi〉}i∈N be a profile of choice frames represent-
ing the initial beliefs and disposition to revise those beliefs
of all the players. Let Pi be the set of total pre-orders that
rationalize 〈H, Ei, fi〉 and satisfy Properties PL1 and PL2i
(Proposition 1 above gives necessary and sufficient condi-
tions for Pi �= ∅).

Definition 3. We say that the profile {〈H, Ei, fi〉}i∈N ad-
mits a common prior if

T

i∈N Pi �= ∅, that is, if there exists
a total pre-order � on H that rationalizes the beliefs of all
the players12 and satisfies Properties PL1 and PL2i for every
i ∈ N . We call any element of

T

i∈N Pi a common prior.13

If the players have a common prior then they share the
same initial beliefs and the same disposition to change those
beliefs in response to the same information. However, the
existence of a common prior is consistent with the players
holding different beliefs during any particular play of the
game, since they will typically receive different information.
A common prior can also be viewed as representing the ini-
tial beliefs and belief revision policy of an external observer
(the external-observer point of view is pursued in [13]).

Definition 4. A total pre-order � on the set of histories
H is called a plausibility order if it satisfies the following
properties:

PL1. ∀h ∈ D, ∀a ∈ A(h), h � ha.

PL2. ∀h ∈ D, (1) ∃a ∈ A(h) such that ha � h and,
(2) ∀a ∈ A(h), if ha � h then h′a � h′,
∀h′ ∈ Iι(h)(h), where ι(h) is the player
who moves at h.

Proposition 2. Fix an extensive form that satisfies Con-
dition C. Let {〈H, Ei, fi〉}i∈N be a profile of choice frames
representing the initial beliefs and disposition to revise those
beliefs of all the players. If the choice frame of each player
satisfies Arrow’s Axiom and Assumptions (A1)-(A3) and the
profile {〈H, Ei, fi〉}i∈N admits a common prior then every
common prior is a plausibility order.

12That is, ∀i ∈ N , ∀E ∈ Ei, fi(E) = {h ∈ E : h � h′, ∀h′ ∈
E}.

13There may be several total pre-orders that play the role
of a common prior, but they all yield the same conditional
beliefs, given the possible items of information encoded in
the extensive form.

3. CHOICE FRAMES AND ASSESSMENTS
Solution concepts for extensive-form games that go be-

yond subgame-perfect equilibrium (such as sequential equi-
librium) are defined in terms of assessments. The notion of
assessment is reviewed in detail in Appendix A. An assess-
ment is a pair (σ, μ) where σ is a (behavior) strategy profile
(that is, an n-tuple of strategies, one for each player) and μ
is a list of probability distributions, one for each information
set, over the histories that constitute that information set.
In [6] an assessment is defined to be AGM-consistent if there
is a plausibility order (see Definition 4 above) that rational-
izes (σ, μ) in the sense that the actions that are played with
positive probability coincide with the plausibility-preserving
actions and the histories that are assigned positive probabil-
ity are those that are most plausible within each information
set. The formal definition is as follows (where σ(a) denotes
the probability with which action a is chosen according to
σ and μ(h) is the probability assigned to history h by the
relevant part of μ).

Definition 5. An assessment (σ, μ) is AGM-consistent if
there exists a plausibility order � on H such that:

(1) σ(a) > 0 if and only if h ∼ ha, and
(2) μ(h) > 0 if and only if h � h′, ∀h′ ∈ Iι(h)(h).

Let {〈H, Ei, fi〉}i∈N be a profile of choice frames such that
(i) the choice frame of each player satisfies Arrow’s Axiom
and Assumptions (A1)-(A3) and (2) the profile {〈H, Ei, fi〉}i∈N

admits a common prior. Let � be any common prior. By
Proposition 2, � is a plausibility order. Corresponding to �
there will be many AGM-consistent assessments (σ, μ), all of
which share the same support (for σ the support is given by
the plausibility-preserving actions and for μ the support is
given by the most plausible histories within each information
set). 14 It can be shown that the converse is also true, that
is, given an AGM-consistent assessment (σ, μ) one can ex-
tract from it a profile {〈H, Ei, fi〉}i∈N of choice frames that
satisfies the hypothesis of Proposition 2. Thus the analysis
of this paper provides a foundation for the notion of AGM-
consistent assessment in terms of epistemic states for the
players that satisfy the AGM postulates for belief revision.

4. CONCLUSION
As shown in [6], the qualitative notion of AGM-consistency

of assessments (Definition 5) is a generalization of the no-
tion of consistency proposed by Kreps and Wilson [15] as
part of the definition of sequential equilibrium. The concep-
tual content of the notion of Kreps-Wilson consistency is not
clear and several attempts have been made to clarify it by
relating it to more intuitive notions, such as ‘structural con-
sistency’ ([14]), ‘generally reasonable extended assessment’
([11]), ‘stochastic independence’ ([2, 13]).15 In this paper we
introduced a representation of the epistemic state of players
in dynamic games based on of choice frames, which provide
a link to the AGM theory of belief revision [1, 5]. We have
identified four properties of individual frames that, together
with the hypothesis of a common prior, are equivalent to the
existence of an AGM-consistent assessment.

14The definition of perfect Bayesian equilibrium put forward
in [6] specifies a way in which the probabilities can be chosen
on these supports so as to make μ compatible with σ and
Bayes’ rule.

15Perea et al [19] offer an algebraic characterization of con-
sistent assessments.
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APPENDIX
A. EXTENSIVE FORMS AND ASSESSMENTS

In this appendix we review the history-based definition
of extensive-form game (see, for example, [18]). If A is a
set, we denote by A∗ the set of finite sequences in A. If
h = 〈a1, ..., ak〉 ∈ A∗ and 1 ≤ j ≤ k, the sequence h′ =
〈a1, ..., aj〉 is called a prefix of h.16 If h = 〈a1, ..., ak〉 ∈ A∗

and a ∈ A, we denote the sequence 〈a1, ..., ak, a〉 ∈ A∗ by
ha.

A finite extensive form without chance moves is a tuple
˙

A, H, N, ι, {≈i}i∈N

¸

whose elements are:

• A finite set of actions A.

• A finite set of histories H ⊆ A∗ which is closed under
prefixes (that is, if h ∈ H and h′ ∈ A∗ is a prefix of
h, then h′ ∈ H). The null history 〈〉 , denoted by ∅,
is an element of H and is a prefix of every history. A
history h ∈ H such that, for every a ∈ A, ha /∈ H, is
called a terminal history. The set of terminal histories
is denoted by Z. Let D = H \ Z denote the set of non-
terminal or decision histories. For every history h ∈ H,
we denote by A(h) the set of actions available at h, that
is, A(h) = {a ∈ A : ha ∈ H}. Thus A(h) �= ∅ if and
only if h ∈ D. We assume that A =

S

h∈D A(h) (that
is, we restrict attention to actions that are available at
some decision history).

• A finite set N = {1, ..., n} of players.

• A function ι : D → N that assigns a player to each
decision history; thus ι(h) is the player who moves at
history h. For every i ∈ N , let Di = ι−1(i) be the
histories assigned to player i. Thus {D1, ..., Dn} is a
partition of D.

• For every player i ∈ N , ≈i is an equivalence relation
on Di. The interpretation of h ≈i h′ is that, when
choosing an action at history h ∈ Di, player i does
not know whether she is moving at h or at h′. The
equivalence class of h ∈ Di is denoted by Ii(h) and
is called an information set of player i; thus Ii(h) =
{h′ ∈ Di : h ≈i h′}. The following restriction applies:
if h′ ∈ Ii(h) then A(h′) = A(h), that is, the set of
actions available to a player is the same at any two
histories that belong to the same information set of
that player.

• The following property, known as perfect recall, is as-
sumed: for every player i ∈ N , if h1, h2 ∈ Di, a ∈
A(h1) and h1a is a prefix of h2 then for every h′ ∈
Ii(h2) there exists an h ∈ Ii(h1) such that ha is a pre-
fix of h′. Intuitively, perfect recall requires a player to
remember what she knew in the past and what actions
she took previously (see [4]).

In order to simplify the notation in the proofs, we shall
assume that no action is available at more than one informa-
tion set: ∀h, h′ ∈ D, if A(h) ∩A(h′) �= ∅ then h′ ∈ Iι(h)(h).

Given an extensive form, one obtains a game based on it by
adding, for every player i ∈ N , a utility (or payoff) function

16In particular, every history is a prefix of itself.

Ui : Z → R (where R denotes the set of real numbers; recall
that Z is the set of terminal histories).

Given an extensive form, a pure strategy of player i ∈ N
is a function that associates with every information set of
player i an action at that information set, that is, a function
si : Di → A such that (1) si(h) ∈ A(h) and (2) if h′ ∈ Ii(h)
then si(h

′) = si(h). A behavior strategy of player i is a col-
lection of probability distributions, one for each information
set, over the actions available at that information set; that
is, a function σi : Di → Δ(A) (where Δ(A) denotes the set
of probability distributions over A) such that (1) σi(h) is
a probability distribution over A(h) and (2) if h′ ∈ Ii(h)
then σi(h

′) = σi(h). Note that a pure strategy is a special
case of a behavior strategy where each probability distribu-
tion is degenerate. A behavior-strategy profile is an n-tuple
σ = (σ1, ..., σn) where, for every i ∈ N , σi is a behavior
strategy of player i. Given our assumption that no action is
available at more than one information set, without risking
ambiguity we shall denote by σ(a) the probability assigned
to action a by the relevant component of the strategy profile
σ.

A system of beliefs, is a collection of probability distri-
butions, one for every information set, over the elements of
that information set, that is, a function μ : D → Δ(H)
such that (1) if h ∈ Di then μ(h) is a probability distri-
bution over Ii(h) and (2) if h ∈ Di and h′ ∈ Ii(h) then
μ(h) = μ(h′). Without risking ambiguity we shall denote
by μ(h) the probability assigned to history h by the system
of beliefs μ.17

An assessment is a pair (σ, μ) where σ is a behavior-
strategy profile and μ is a system of beliefs.

B. PROOFS
The proof of Proposition 1 requires several preliminary

results. The idea of the proof is to construct a binary rela-
tion on the set of histories H that satisfies Properties PL1
and PL2i and extend it to a total pre-order which is then
shown to rationalize the given choice frame. The extension
is obtained by invoking Proposition 3 below, which is known
as Szpilrajn’s theorem (for a proof see [22], p. 14). First we
give the definition of extension. Given a binary relation R
on H (thus R ⊆ H × H) we shall interchangeably use the
notation hRh′ and (h, h′) ∈ R.

Definition 6. Let R be a binary relation on H and � a
total pre-order on H. We say that � extends R if
(1) if (h, h′) ∈ R then (h, h′) ∈ � and
(2) if (h, h′) ∈ R and (h′, h) /∈ R then (h′, h) /∈ �.

Proposition 3. (Szpilrajn’s theorem) Let R be a binary
relation on H which is reflexive and transitive. Then there
exists a total pre-order � on H which extends R.

The following proposition is more general than Proposi-
tion 1 in that it applies to arbitrary extensive forms (that is,
Condition C is not assumed), but it is also weaker since it
only refers to Property PL1 and Assumption A1. The proof
illustrates the strategy used in proving Proposition 1.

17A more precise notation would be μ(h)(h): if h ∈ Di then
μ(h) is a probability distribution over Ii(h) and, for every
h′ ∈ I(h), μ(h) = μ(h′) so that μ(h)(h) = μ(h′)(h). With
slight abuse of notation we denote this common probability
by μ(h).
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Proposition 4. Let 〈H, Ei, fi〉 be a choice frame of player
i. The following are equivalent:

(a) There is a total pre-order � on H that satisfies prop-
erty PL1 (∀h ∈ D, ∀a ∈ A(h), h � ha) and rationalizes
〈H, Ei, fi〉 (∀E ∈ Ei, fi(E) = {h ∈ E : h � h′, ∀h′ ∈ E}),

(b) 〈H, Ei, fi〉 satisfies Arrow’s Axiom and Assumption
A1.

Proof. (a)⇒ (b). Let � be a total pre-order on H that
satisfies property PL1 and is such that

∀E ∈ Ei, fi(E) = {h ∈ E : h � h′, ∀h′ ∈ E}. (1)

First we show that Arrow’s Axiom (AA) holds. Let F, G ∈
Ei be such that F ⊆ G and fi(G)∩F �= ∅. We need to show
that fi(F ) = fi(G)∩ F . Fix an arbitrary h ∈ fi(G)∩ F. By
(1), h � h′, ∀h′ ∈ G and thus, since F ⊆ G, h � h′, ∀h′ ∈
F . Hence, by (1) and the fact that h ∈ F , h ∈ fi(F ).
Conversely, fix an arbitrary h ∈ fi(F ). Then, by (1),

h � h′, ∀h′ ∈ F. (2)

By hypothesis, fi(G)∩F �= ∅. Fix an arbitrary h0 ∈ fi(G)∩
F . Since h0 ∈ fi(G), by (1), h0 � h′, ∀h′ ∈ G. Since h0 ∈ F ,
by (2) h � h0. Thus, by transitivity of �, h � h′, ∀h′ ∈ G, so
that, by (1), h ∈ fi(G) (note that h ∈ G since h ∈ fi(F ) ⊆ F
and F ⊆ G). Hence h ∈ fi(G) ∩ F .

Next we prove that Assumption A1 is satisfied. Fix arbi-
trary E ∈ Ei and h ∈ fi(E). Let h′ ∈ E be a prefix of h.
We need to show that h′ ∈ fi(E). By (1) (since h ∈ fi(E)),
h � y, ∀y ∈ E. By Property PL1 and transitivity of �,
h′ � h.18 Thus, by transitivity of �, h′ � y, ∀y ∈ E, so
that, by (1), h′ ∈ fi(E).

(b) ⇒ (a). Let 〈H, Ei, fi〉 satisfy Arrow’s Axiom and As-
sumption A1. Define the following binary relation S on H:

(h, h′) ∈ S if and only if

8

>

>

>

>

<

>

>

>

>

:

either (a) h is a prefix of h′

or (b) ∃h1 ∈ H, ∃E ∈ Ei :
h is a prefix of h1,
h1 ∈ fi(E)
and h′ ∈ E.

(3)
First we show that S is reflexive and transitive. Reflexivity
follows from (a) of (3) and the fact that, by definition of
prefix, every history is a prefix of itself. To prove transitivity,
fix arbitrary h, h′, h′′ ∈ H and suppose that hSh′ and h′Sh′′.
We need to show that hSh′′. If h is a prefix of h′ and h′

is a prefix of h′′, then h is a prefix of h′′ and thus hSh′′.
If h is a prefix of h′ while h′ is not a prefix of h′′, then
∃h1 ∈ H, ∃E ∈ Ei such that h′ is a prefix of h1, h1 ∈ fi(E)
and h′′ ∈ E. Then (since h is a prefix of h′ and h′ is a
prefix of h1) h is a prefix of h1 and thus hSh′′ by (b) of
(3). If h is not a prefix of h′ while h′ is a prefix of h′′, then
∃h1 ∈ H, ∃E ∈ Ei such that h is a prefix of h1, h1 ∈ fi(E)
and h′ ∈ E. Then, since h′ ∈ E and h′ is a prefix of h′′,
h′′ ∈ E (this follows from the definition of Ei). Thus hSh′′

by (b) of (3). We are left with the case where h is not a

18Since h′ is a prefix of h, there exist a1, ..., am ∈ A (m ≥ 0)
such that h = h′a1...am. By PL1 h′ � h′a1 � h′a1a2 � ... �
h′a1...am = h. Thus, by transitivity of �, h′ � h.

prefix of h′ and h′ is not a prefix of h′′. Then ∃x1, y1 ∈ H,
∃E, F ∈ Ei such that (i) h is a prefix of x1, (ii) x1 ∈ fi(E),
(iii) h′ ∈ E, (iv) h′ is a prefix of y1, (v) y1 ∈ fi(F ) and
(vi) h′′ ∈ F. By (iii) and (iv) y1 ∈ E. Hence, by (v) (since
fi(F ) ⊆ F ), E ∩F �= ∅ so that either F ⊆ E or E ⊆ F (see
Footnote 4). Consider first the case where F ⊆ E. Then,
since h′′ ∈ F , we have that h′′ ∈ E. By (b) of (3), it follows
from this, (i) and (ii) that hSh′′. Now consider the case
where E ⊆ F . Since y1 ∈ fi(F ) and y1 ∈ E, fi(F )∩E �= ∅.
Thus, by Arrow’s Axiom, fi(E) = fi(F ) ∩ E. Hence, since
x1 ∈ fi(E), x1 ∈ fi(F ). Thus, since since h is a prefix of x1,
x1 ∈ fi(F ) and h′′ ∈ F , by (b) of (3) hSh′′.

Since S is reflexive and transitive, by Proposition 3, there
exists a total pre-order � on H which extends S (see Def-
inition 6). Fix an arbitrary such total pre-order �. We
want to show that � satisfies Property PL1 and rational-
izes 〈H, Ei, fi〉. Since, for every h ∈ D and a ∈ A(h), h
is a prefix of ha, (h, ha) ∈ S and thus, since S is a sub-
set of �, h � ha so that � satisfies Property PL1. Now
fix an arbitrary E ∈ Ei. We need to show that fi(E) =
{h ∈ E : h � h′, ∀h′ ∈ E}. Fix arbitrary h ∈ fi(E) and
h′ ∈ E. Then (since h is a prefix of itself) by (b) of (3)
hSh′ and thus, since S is a subset of �, h � h′. Hence
fi(E) ⊆ {h ∈ E : h � h′, ∀h′ ∈ E}. For the converse, let
h ∈ E be such that h � h′ for all h′ ∈ E; we need to show
that h ∈ fi(E). Fix an arbitrary h0 ∈ fi(E) (recall that, by
definition of choice frame, fi(E) �= ∅). If h is a prefix of h0

then, by Assumption A1, h ∈ fi(E). Suppose that h is not a
prefix of h0. By definition of S (since h ∈ E and h0 ∈ fi(E)
and h0 is a prefix of itself), (h0, h) ∈ S. If (h, h0) /∈ S, then,
since � is an extension of S (see Definition 6), (h, h0) /∈ �,
contradicting our hypothesis that h � h′, ∀h′ ∈ E. Thus
it must be that (h, h0) ∈ S. Then (since h is not a prefix
of h0) there exist h1 ∈ H and F ∈ Ei such that (i) h is a
prefix of h1, (ii) h1 ∈ fi(F ) and (iii) h0 ∈ F . Then (since
h0 ∈ F and h0 ∈ fi(E) ⊆ E), E ∩ F �= ∅ and thus (see
Footnote 4) either E ⊆ F or F ⊆ E (see Footnote 4). Sup-
pose first that E ⊆ F . Since h ∈ E and h is a prefix of
h1, h1 ∈ E. Thus, since h1 ∈ fi(F ), fi(F ) ∩ E �= ∅ and,
by Arrow’s Axiom, fi(E) = fi(F ) ∩ E. Hence h1 ∈ fi(E)
and thus, by Assumption A1 (since h is a prefix of h1 and
h ∈ E), h ∈ fi(E). Suppose now that F ⊆ E. Then, since
h0 ∈ fi(E)∩F , fi(E)∩F �= ∅ and thus, by Arrow’s Axiom,
fi(F ) = fi(E) ∩ F . Thus, since h1 ∈ fi(F ), h1 ∈ fi(E)
and therefore, by Assumption A1 (since h is a prefix of h1),
h ∈ fi(E).

The proof of Proposition 1 follows the same strategy, start-
ing from a relation that satisfies also Property PL2i. In order
to do this we need several preliminary lemmas. Note that
Condition C is used only in the proof of Lemma 3 and is not
needed for any other result.

Lemma 1. Fix an arbitrary choice frame 〈H, Ei, fi〉 of player
i. Let h ∈ Di be a decision history of player i and let F ∈ Ei

be such that h ∈ F . Then F ⊇ E, where E =
−→
Ii (h) ∈ Ei.

Proof. Since h ∈ F ∈ Ei, there exists an x ∈ Di such

that x is a prefix of h and F =
−→
Ii (x). If x = h then F = E.

If x �= h, then, by perfect recall, every h′ ∈ Ii(h) has a prefix

in Ii(x) and thus E =
−→
Ii (h) ⊆ −→Ii (x) = F .
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Fix an arbitrary choice frame 〈H, Ei, fi〉 of player i. Define
the following binary relations on H:

(x, y) ∈ R1 if and only if

j

x ∈ Di, y ∈ Ii(x) and

x ∈ fi(E) where E =
−→
Ii (x).

(4)

(x, y) ∈ R2 if and only if

8

<

:

y ∈ Di, x = ya for some a ∈ A(y)
and ∃h ∈ Ii(y) such that

h, ha ∈ fi(E) where E =
−→
Ii (y)

(5)

(x, y) ∈ R3 if and only if x ∈ fi(H) and y is a prefix of x.
(6)

(x, y) ∈ R4 if and only if

j

y ∈ Di, y is a prefix of x and

x ∈ fi(E) where E =
−→
Ii (y).

(7)

(x, y) ∈ R5 if and only if x is a prefix of y. (8)

R =

5
[

j=1

Rj . (9)

R∗ = transitive closure of R. (10)

Remark 2. The relations R1 and R5 are transitive. Fur-
thermore, R5 is reflexive (since every history is a prefix of
itself).

Remark 3. Let 〈H, Ei, fi〉 be a choice frame of player i.
If h ∈ Di and a ∈ A(h) are such that (ha, h) ∈ R2 then
(h′a, h′) ∈ R2, for every h′ ∈ Ii(h).19

Lemma 2. Let 〈H, Ei, fi〉 be a choice frame of player i
that satisfies Arrow’s Axiom and Assumption A1. Let h ∈
Di and a ∈ A(h) be such that (ha, h) /∈ R2. Let 〈x1, ..., xm〉
(m ≥ 2) be a sequence in H such that x1 = ha and, ∀j =
1, ..., m− 1, (xj , xj+1) ∈ R (where R is give by (9)). Then,
∀j = 1, ..., m, ∃hj ∈ Ii(h) such that hja is a prefix of xj.

Proof. This is clearly true for j = 1 (take h1 = h). We
now show that if the statement is true for j ≥ 1 then it is
true for j + 1. Let hj ∈ H be such that

hj ∈ Ii(h) and hja is a prefix of xj . (11)

By hypothesis, (xj , xj+1) ∈ R. We need to consider all the
possible cases.

Case 1: (xj , xj+1) ∈ R5. Then xj is a prefix of xj+1 and
thus, since hja is a prefix of xj , hja is a prefix of xj+1.

19Proof: since (ha, h) ∈ R2, ∃h0 ∈ Ii(h) such that h0, h0a ∈
fi(E) where where E =

−→
Ii (h0). Hence, by definition of R2,

(h′a, h′) ∈ R2, for every h′ ∈ Ii(h0) = Ii(h).

Case 2: (xj , xj+1) ∈ R4. Then xj+1 ∈ Di, xj+1 is a prefix
of xj and

xj ∈ fi(F ) where F =
−→
Ii (xj+1). (12)

Since both hja and xj+1 are prefixes of xj , either hja is a
prefix of xj+1 (with xj+1 = hja as a special case), and thus
the claim is true (take hj+1 = hj), or xj+1 is a prefix of
hja and xj+1 �= hja. Consider the latter case; then xj+1 is

a prefix of hj . Let E =
−→
Ii (h) =

−→
Ii (hj). Then, by perfect

recall (since xj+1 ∈ Di), E ⊆ F . Thus, since, by (11) and
(12), xj ∈ fi(F ) ∩ E, by Arrow’s Axiom fi(E) = fi(F ) ∩ E
so that xj ∈ fi(E). Hence, by Assumption A1, since hja is
a prefix of xj , hja ∈ fi(E) and thus also hj ∈ fi(E); but
this implies, by definition of R2 (see (5)), that (ha, h) ∈ R2,
contrary to our hypothesis. Thus if (xj , xj+1) ∈ R4 then
hja is a prefix of xj+1.

Case 3: we show that it cannot be that (xj , xj+1) ∈ R3.
In fact, (xj , xj+1) ∈ R3 requires that xj ∈ fi(H) so that, by

Arrow’s Axiom, fi(E) = fi(H) ∩E (where E =
−→
Ii (h); note

that xj ∈ E). Hence xj ∈ fi(E) and, by Assumption A1
(since hja is a prefix of xj), hja ∈ fi(E) an thus also hj ∈
fi(E); but this implies, by definition of R2, that (ha, h) ∈
R2, contrary to our hypothesis.

Case 4: (xj , xj+1) ∈ R2. Then, by definition of R2, either
(i) xj+1 = hj (if xj = hja) or (ii) xj+1 = hjab1...bm−1 (if
xj = hjab1...bm for some b1, ..., bm ∈ A, m ≥ 1). In case (i),
by definition of R2, ∃h0 ∈ Ii(hj) such that h0, h0a ∈ fi(E)

(where E =
−→
Ii (hj)). Since Ii(hj) = Ii(h), it would follow

that (ha, h) ∈ R2, contradicting our hypothesis. In case (ii)
hja is a prefix of xj+1.

Case 5: (xj , xj+1) ∈ R1. Then xj ∈ Di and xj+1 ∈ Ii(xj).
By perfect recall, since hja is a prefix of xj , ∃h′ ∈ Ii(hj) =
Ii(h) such that h′a is a prefix of xj+1.

Corollary 1. Let 〈H, Ei, fi〉 be a choice frame of player
i that satisfies Arrow’s Axiom and Assumption A1. Let h ∈
Di and a ∈ A(h). Then (ha, h) ∈ R∗ if and only if (ha, h) ∈
R2.

Proof. If (ha, h) ∈ R2 then, since R2 ⊆ R ⊆ R∗, (ha, h) ∈
R∗. To prove the converse, suppose that (ha, h) ∈ R∗. Then
there exists a sequence 〈x1, ..., xm〉 (m ≥ 2) in H such that
x1 = ha, xm = h and, ∀j = 1, ..., m − 1, (xj , xj+1) ∈ R. If
(ha, h) /∈ R2 then, by Lemma 2, ∀j = 1, ..., m, ∃hj ∈ Ii(h)
such that hja is prefix of xj . In particular, ∃hm ∈ Ii(h)
such that hma is prefix of xm = h, but this violates perfect
recall.

Lemma 3. Fix an extensive form that satisfies Condition
C. Let 〈H, Ei, fi〉 be a choice frame of player i that satisfies
Arrow’s Axiom and Assumptions A1 and A3. Let F ∈ Ei

and x, y ∈ H be such that x ∈ fi(F ) and y ∈ F\fi(F ). Then
(x, y) ∈ R∗ and (y, x) /∈ R∗ (where R∗ is given by (10)).

Proof. First we show that (x, y) ∈ R∗. If F = H then
x ∈ fi(H). Let ∅ denote the empty history (recall ∅ is a
prefix of every history). Then (x, ∅) ∈ R3 and (∅, y) ∈ R5.
Thus (x, y) ∈ R∗. Consider now the case where F �= H.
Then (since x, y ∈ F ) there exist x0, y0 ∈ Di such that

F =
−→
Ii (x0), y0 ∈ Ii(x0), x0 is a prefix of x and y0 is a prefix

of y. Since x ∈ fi(F ),

(x, x0) ∈ R4 (13)
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and, by Assumption A1, x0 ∈ fi(F ). Thus

(x0, y0) ∈ R1. (14)

Hence, since (y0, y) ∈ R5, it follows from (13) and (14) that
(x, y) ∈ R∗.

Next we show that (y, x) /∈ R∗. We will show that if
〈x1, ..., xm〉 (m ≥ 2) is a sequence in H with x1 ∈ F\fi(F )
for some F ∈ Ei, and, for all j = 1, ..., m − 1, (xj , xj+1) ∈
R (where R is defined in (9)) then xm /∈ fi(F ). For this
purpose it will be sufficient to prove the following: ∀F ∈ Ei,
∀h1, h2 ∈ H

if h1 ∈ F\fi(F ) and (h1, h2) ∈ R then h2 ∈ F\fi(F ). (15)

Let F ∈ Ei, h1 ∈ F\fi(F ) and (h1, h2) ∈ R. We need to
consider all the possible cases.

Suppose that (h1, h2) ∈ R1. Then h1 ∈ Di, h2 ∈ Ii(h1)

and h1 ∈ fi(E) where E =
−→
Ii (h1). Since h1 ∈ F , by Lemma

1 F ⊇ E. Thus, since h2 ∈ E, h2 ∈ F . Suppose that
h2 ∈ fi(F ). Then h2 ∈ fi(F ) ∩ E and thus, by Arrow’s
Axiom, fi(E) = fi(F )∩E, so that h1 ∈ fi(F ), contradicting
our hypothesis. Hence h2 ∈ F\fi(F ).

Suppose that (h1, h2) ∈ R2. Then h2 ∈ Di and h1 = h2a
for some a ∈ A(h2) and

∃h ∈ Ii(h2) such that h, ha ∈ fi(E) where E =
−→
Ii (h2).

(16)

Let x ∈ H be the prefix of h2a such that F =
−→
Ii (x). By

Condition C (since h2 ∈ Di), h2a /∈ Di and thus x is a
prefix of h2, so that F ⊇ E.20 Thus h2 ∈ F . If h2 ∈
fi(F ) then fi(F ) ∩ E �= ∅ and thus, by Arrow’s Axiom,
fi(E) = fi(F ) ∩ E, so that h2 ∈ fi(E). It follows from
this, (16) and Assumption A3 that h2a ∈ fi(E) and thus
h2a ∈ fi(F ), contradicting the hypothesis that h2a = h1 ∈
F\fi(F ). Hence h2 ∈ F\fi(F ).

Next we show that (h1, h2) /∈ R3. If (h1, h3) ∈ R3 then
h1 ∈ fi(H) and thus (since h1 ∈ F ) fi(H) ∩ F �= ∅ and
by Arrow’s Axiom fi(F ) = fi(H) ∩ F so that h1 ∈ fi(F ),
contradicting the hypothesis that h1 ∈ F\fi(F ).

Suppose that (h1, h2) ∈ R4. Then h2 ∈ Di, h2 is a prefix

of h1 and h1 ∈ fi(E) where E =
−→
Ii (h2). Since h1 ∈ E ∩ F ,

E ∩ F �= ∅ and thus (see Footnote 4) either E ⊆ F or
F ⊆ E. It cannot be that F ⊆ E because in this case (since
h1 ∈ fi(E) ∩ F ) by Arrow’s Axiom fi(F ) = fi(E) ∩ F and
thus h1 ∈ fi(F ), contradicting our hypothesis. Hence it
must be E ⊆ F so that, since h2 ∈ E, h2 ∈ F . Suppose
that h2 ∈ fi(F ). Then h2 ∈ fi(F )∩E and thus, by Arrow’s
Axiom, fi(E) = fi(F ) ∩ E; hence, since h1 ∈ fi(E), h1 ∈
fi(F ), contradicting our hypothesis. Hence h2 ∈ F\fi(F ).

Suppose that (h1, h2) ∈ R5. Then h1 is a prefix of h2

and thus, since h1 ∈ F , h2 ∈ F . If h2 ∈ fi(F ) then, by
Assumption A1, h1 ∈ fi(F ), contradicting our hypothesis.
Hence h2 ∈ F\fi(F ).

Proof of Proposition 1. (a) ⇒ (b) Let �i be a total
pre-order that rationalizes 〈H, Ei, fi〉 and satisfies Proper-
ties PL1 and PL2i. By Proposition 4, 〈H, Ei, fi〉 satisfies

20Without Condition C it is possible that h2a ∈ Di and that

F =
−→
Ii (h2a), in which case h2 /∈ F .

Arrow’s Axiom and Assumption A1. We need to show that
Assumptions A2 and A3 are also satisfied. Let h ∈ Di and
F ∈ Ei and suppose that h ∈ fi(F ). We want to show that

ha ∈ fi(F ) for some a ∈ A(h). Let E =
−→
Ii (h). By Lemma

1, F ⊇ E. Thus, by Arrow’s Axiom (since h ∈ fi(F ) ∩ E),
fi(E) = fi(F ) ∩ E. Hence h ∈ fi(E) and it will be enough
to show that ha ∈ fi(E) for some a ∈ A(h). Since h ∈ fi(E)
and, by hypothesis, fi(E) = {x ∈ E : x �i y, ∀y ∈ E},

h �i y, ∀y ∈ E. (17)

By (1) of Property PL2i there exists an a ∈ A(h) such that
ha �i h. Thus, by (17) and transitivity of �i, ha �i y, ∀y ∈
E and thus ha ∈ fi(E). Thus Assumption A2 holds. To
prove that Assumption A3 is satisfied, let h ∈ Di, a ∈ A(h)
and F ∈ Ei be such that h, ha ∈ fi(F ). Fix an arbitrary
h′ ∈ Ii(h) ∩ fi(F ). We need to show that h′a ∈ fi(F ).

Letting E =
−→
Ii (h), by the same argument used above we

have that fi(E) = fi(F ) ∩ E, so that h, ha ∈ fi(E) and
h′ ∈ Ii(h) ∩ fi(E) and it is thus sufficient to show that
h′a ∈ fi(E). Since ha ∈ fi(E) and, by hypothesis, fi(E) =
{x ∈ E : x �i y, ∀y ∈ E}, ha �i h. Thus, by (2) of
Property PL2i, h′a �i h′. Since h′ ∈ fi(E), h′ �i y, ∀y ∈ E.
Thus, by transitivity of �i, h′a �i y, ∀y ∈ E and therefore
h′a ∈ fi(E).

(b)⇒ (a) Let 〈H, Ei, fi〉 be a choice frame of player i that
satisfies Arrow’s Axiom and Assumptions A1-A3. Let R∗

be the relation defined in (10). Then R∗ is transitive as well
as reflexive (because R5 is reflexive - see Remark 2 - and
R5 ⊆ R∗). Let �i be a total pre-order that extends R∗ (see
Definition 6 and Proposition 3). Since R5 ⊆ R∗ ⊆ �i, �i

satisfies Property PL1. Next we show that �i satisfies Prop-

erty PL2i. Fix an arbitrary h ∈ Di and let E =
−→
Ii (h) ∈ Ei.

By definition of choice frame, fi(E) �= ∅. Fix an arbitrary
x0 ∈ fi(E) and let h0 ∈ Ii(h) be the prefix of x0 in Ii(h).
Then, by Assumption A1, h0 ∈ fi(E). Thus, by Assumption
A2, there exists an a ∈ A(h0) = A(h) such that h0a ∈ fi(E).
Hence, by (5), (ha, h) ∈ R2 and therefore (since R2 is a sub-
set of �i) ha �i h. Thus we have proved part (1) of Prop-
erty PL2i. To prove part (2) of Property PL2i, fix an arbi-
trary h ∈ Di and an arbitrary a ∈ A(h) and suppose that
ha �i h. We have to show that h′a �i h′ for all h′ ∈ Ii(h).
Since (h, ha) ∈ R5 ⊆ R∗ if (ha, h) /∈ R∗ then, by defini-
tion of extension (see Definition 6) ha ��i h, contradicting
our supposition. Thus (ha, h) ∈ R∗. Hence, by Corollary
1, (ha, h) ∈ R2 and thus (see Remark 3) (h′a, h′) ∈ R2, for
all h′ ∈ Ii(h). Since R2 ⊆ R∗ ⊆ �i, h′a �i h′ for all
h′ ∈ Ii(h).

It remains to show that �i rationalizes 〈H, Ei, fi〉. Fix an
arbitrary E ∈ Ei, h ∈ fi(E) and h′ ∈ E. Then (h, h′) ∈
R∗.21 Thus fi(E) ⊆ {h ∈ E : hR∗h′, ∀h′ ∈ E} so that, since
R∗ is a subset of �, fi(E) ⊆ {h ∈ E : h � h′, ∀h′ ∈ E}.
Conversely, let h ∈ E be such that h � h′, ∀h′ ∈ E. We
need to show that h ∈ fi(E). Fix an arbitrary h0 ∈ fi(E).
Suppose that h /∈ fi(E). Then, by Lemma 3, (h0, h) ∈ R∗

and (h, h0) /∈ R∗. Thus, since �i is an extension of R∗ (see
Definition 6), (h, h0) /∈ �i, contradicting our hypothesis

21The argument is the same as in the first part of the proof
of Lemma 3: if E = H then (h, ∅) ∈ R3 and (∅, h′) ∈ R5; if
E �= H then, (h, x0) ∈ R4, (x0, y0) ∈ R1 and (y0, h

′) ∈ R5,

where x0, y0 ∈ Di are such that E =
−→
Ii (x0), y0 ∈ Ii(x0), x0

is a prefix of h and y0 is a prefix of h′.
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that h � h′, ∀h′ ∈ E.

Proof of Proposition 2. Let � ∈ T

i∈N

Pi. By Proposi-

tion 1, for every i ∈ N , every element of Pi satisfies Property
PL1. Thus � satisfies PL1. Now fix an arbitrary decision
history h and let i be the player to whom it belongs. By
Property PL2i of Proposition 1, ∃a ∈ A(h) such that ha � h
and, ∀a ∈ A(h), if ha � h then h′a � h′, ∀h′ ∈ Ii(h). Thus �
satisfies also Property PL2. Hence � is a plausibility order.
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