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1 Introduct ion  

Traditional decision theory treats risk (situations where probabilities of events are known) as formally 

equivalent to uncertainty (situations in which the probabilities of events are unknown). The subjective ex- 

pected utility (SEU) model axiomatized by Savage (1954) has been the most important theory in analysing 

decision making under uncertainty. Expected utility (EU) has been the accepted basis for analysing deci- 

sion making in games as well. Using the EU model to represent players' preferences, a number of solution 

concepts have been developed, most prominent among them being Nash Equilibrium. 

However, the descriptive validity of the SEU model has been questioned. In recent years generalizations 

of, and alternatives to, the SEU framework have been developed, where the decision maker does not have 

point beliefs that can be represented as in Savage. A growing literature has attempted to extend this 

theory to interactive situations t. Players in games are modelled as facing uncertainty regarding opponents' 

strategies and the standard solution concepts are generalized to account for deviations from subjective 

expected utility maximization. 

Savage (1954) shows how properties of a decision maker's probabilistic beliefs can be deduced from 

primitive consistency axioms on preferences. Different restrictions on conditional preferences generate dif- 

ferent notions of qualitative belief. Under the SEU axioms, these are equivalent, so that the "subjective 

probability" generated by SEU preferences has a natural epistemic interpretation: belief can be identi- 

fied with "full belief" or belief with probability one. However, when individuals are not expected utilily 
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maximizers, the alternative notions of belief generated by assumptions on preferences are not necessarily 

equivalent. That is, qualitative notions of belief arising out of different restrictions on preferences vary in 

their implications. For example, when players' preferences belong to the maxmin expected utility (MEU) 

class, "full belief" can be thought of as corrresponding to a situation where all beliefs in the agent's belief 

set place probability one on the event that is believed; weaker notions of belief might relax this notion to 

require, for instance, that beliefs only place some positive weight on the event that is believed, or that 

events which are not believed are assigned zero weight by at least one belief, but not necessarily by all of 

them. 

When different notions of belief are no longer equivalent, the choice of which notion of belief to employ 

becomes critical in extending decision theory to games. Alternative representations of preferences, and 

notions of belief, will mean that restrictions on the rationality of opponents lead to different epistemic 

conditions for solution concepts. 

Morris (1997) provides a general framework for preference-based belief which allows comparison of 

different notions of belief in order to determine which notions are 'stronger' or 'weaker' than others. He 

studies belief operators, which provide a semantic characterisation of belief by identifying, for each state of 

the world, the events that the decision maker believes. Belief operators defined from the decision maker's 

preferences can be characterised using standard preference representations, and provide epistemic models 

for decision making in both expected utility and non-expected utility environments. 

The purpose of this paper is to bring together these developments in the decision-theoretic foundations 

of games by setting out a general framework for characterising dominance and equilibrium in normal 

form games with players whose preferences may deviate from the expected utility model. The standard 

framework considers players with SEU preferences; knowledge is defined as belief with probability one, 

and epistemic conditions for dominance and equilibrium are derived. In this paper, I relax the axioms 

on preferences, allowing them to deviate from expected utility, and investigate the implications of varying 

belief of rationality for dominance and equilibrium. 

I first show that common belief of rationality, where belief is defined in the sense of Savage, and 

weak monotonicity assumptions on preferences, lead players to play pure strategies that are iteratively 

undominated by other pure strategies. However, when the notion of belief is weakened, then it is not always 

possible to rule out play of iteratively strictly dominated strategies. I also show that when preferences are 

admissible and beliefs respect strict dominance, common belief of rationality implies one round of deletion of 

weakly dominated strategies, with subsequent rounds of deletion confined to strictly dominated strategies. 

In a closely related paper, Epstein (1997) considers rationalizability and equilibrium when players' 

preferences deviate from expected utility maximization. However, he retains Savage belief and investigates 

the implications of varying the notion of rationality, relating a general notion of rationalizability to the 
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standard model of expected utility and to pure strategy dominance. The exercise carried out in this paper 

is to relate different notions of belief and to compare the implications of common belief of rationality, 

appropriately defined, across representations of preferences. 

I also investigate epistemic conditions for pure-strategy Nash equilibrium, defined to be a pair of pure- 

strategy best responses. In the standard model, mutual belief of actions implies that actions form a 

Nash equilibrium (Aumann and Brandenburger (1995)); I show first that with general preferences, mutual 

Savage belief of actions is sufficient for actions to be a Nash equilibrium, but that when belief is weakened 

to "weak" belief, as defined in Morris (1997), there exists a class of preferences for which mutual belief of 

actions does not imply that players play a Nash equilibrium. 

The paper is organized as follows. In section 2, I review briefly the decision-theoretic framework 

and recent extensions. In section 3, I extend this to two-player situations. I define an interactive belief 

system and prove some preliminary results regarding properties of interactive beliefs. Section 4 considers 

pure strategy dominance, and characterises conditions for iterative strict and weak dominance. Section 5 

explores epistemic conditions for equilibrium with generalized preferences. 

2 P r e f e r e n c e s  a n d  B e l i e f s  

2.1 Preference preliminaries 

The traditional approach to modelling choice under uncertainty in economics and decision theory combines 

an exogenous framework for modelling belief with a set of preferences. However, a given set of preferences 

over acts with state-contingent outcomes, and beliefs over those states, will not in general be reconcilable 

without further restrictions. Hence a more natural approach in this context is that due to Savage (1954), 

where individual beliefs are derived from restrictions on preferences, so that beliefs can be thought of as 

being "revealed" by behavior rather than imposed a p r /o r /by  the modeller. 

I begin by outlining a framework for preferences, and then defining belief in those terms. Let ~ be a 

finite set of states of the world. Let the set of "acts" be the set of all functions from n to R, the real line, 

so that acts can be thought of as vectors in R ~. Thus act x E R ~ yields the prize xoj in state w E n. For 

E C ~, XE denotes the tuple (x~}~eE. I denote by - E  the complement of E in ~ and use the notation 

x(~} or x~ and x_(~} or x_~ interchangeably. At each state of the world, w, an individual is assumed to 

have a preference relation, ~oJ, over acts, where x ~o~ Y implies that, at w, act x is at least as good as act 

y. Strict preference and indifference are defined in the usual fashion. 

In the standard EU framework, an individual's beliefs are represented by a single countably a~lditive 

probability measure on the set of states. Preference relations { ~ ) o ~  on R ~ have an EU representation 

if there exists, for each state w E ~, an increasing and continuous utility function u~ : R ~ R and a 
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countably additive probability measure p~ on N such that ,  for all x, y E R ~, 

y > 
w'6f~ w 'E~  

Two alternative representations of preferences which relax this restriction are the maxmin expected utility 

(MEU) framework and the Choquet expected utility (CEU) model. Preference relations { ~ } ~ e ~  on R a 

have an MEU representation if there exists, for each state w E f~, an increasing and continuous utility 

function u~ : R ~ R and a unique, nonempty, closed and convex conditional belief set C~ of countably 

additive probability measures on f~ such that ,  for all x, y E R ~, 

In the case of CEU preferences, the probability measure is non-additive. A non-additive probability measure 

(sometimes known as a capacity) is a function v : 2 e ~ R+ ,  with v(¢) = 0, v(f~) = 1 and v(E)  < v(F)  if 

E C F.  The range of act x is the set of values attained on n.  Let T be any finite ordered subset of the 

real line containing the range of x, so that  ( r  E R] r = x~ for some w E f~} C T = { r l , . .  " , rK )  C R and 

r l  > r2  > " "  > r K .  Letting r g + l  ---- O, the expected value of x is 

K 

Ev(x)  = ~ ( r k -  rk+l) v({w E ~ 1 ~  -> rk}). 
k----1 

This definition reduces to the usual notion of expected value if v is additive. Write u~(x) for the vector 

(u~(x~)}~en.  Preference relations { ~ } ~ e ~  on R n have a CEU representation ff there exists, for each 

state w E f~, an increasing and continuous utility function u~ : R ~ R and a non-additive probability 

measure on ~,~ such that ,  for all x,y E R ~, 

x y > 

Lexicographic preferences allow decision makers to take into account events which are assigned proba- 

bility zero ex ante. Say that  x is lexicographically greater than y [x _>L Y] if y/ > xi implies Xh > Yh for 

some h < i. Preference relations { ~ } ~ e ~  on R ~ have a lexicographic expected utility (LEU) representa- 

tion if there exists, (1) a positive integer J ,  (2) for each state w E ~, an increasing and continuous utility 

function u~ : R --+ R and (3) for each w E f~ and j = 1 , . - . ,  J ,  a countably additive probability measure 

p~ on f~ such that,  for all x,y E R n, 

x y _>L . 

t,w E~ j----I ~,w' Ef~ j-~l  

In order to ensure that  the preference relation is a non-trivial ordering, I shall impose the following 

restrictions: reflexivity [P1], non-triviality [P2], transit ivity [P3] and completeness [P4]. In addition to 
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these, there are various monotonocity assumptions that  may be made. Say tha t  x > y if x~ > y~ for all 

w • f l ; x > y i f x > y a n d x w > y w f o r s o m e w • f l ; x > > y i f x ~ > y ~ f o r a l l w • n .  

P 5  : Preference relations are admissible if x > y ~ x ~w y and x _> y ~ x ~-~ y, for all w • n.  

A weaker assumption, which is implied by [P5], is the following: 

P5* : Preference relations are monotone if x >> y =v x ~w y and x > y ~ x ~ y, for all w E ft. 

Two more substantive assumptions are: 

P 6  : Preference relations satisfy non-nuU statewise monotonicity if, for all w, w' E fi, either ( xw,, z_~,) ~ 

(y~,,z_~,) for all x , y , z  • Rn or (x~,,z_~,) ~ (y~,,z-w,) for all x >> V,Z. 

P 7  : Preference relations are continuous if, for all for all w • fl, the set {x • R n [ x ~ y} is closed. 

2 . 2  B e l i e f s ,  p o s s i b i l i t y  a n d  s u p p o r t s  

Under certain conditions, results about  belief on a finite state space can be represented by two equivalent 

formalisms: belief operators and possibility relations. A belief operator  specifies, for each subset of the 

state space (or event), the set of states where the individual believes tha t  event is true. A belief operator 

is thus a mapping B : 2 n ~ 2 n, with the interpretation that  the individual believes event E C fl at state 

w E N if and only if w E B(E). 

A possibility correspondence specifies, for each state of the world, which states the individual thinks 

are possible: it is a mapping from the uncertainty space to its subsets, P : fl ~ 2 n. The interpretation is 

that  if w ~ E P(w), the state w ~ is thought possible when the true state is w. 

D e f i n i t i o n  1 The operator B : 2 n ~ 2 n represents the possibility relation P if  

B(E) = {w E nl P(~) c E} 

P(w) = ~ { F  C a I a~ E B(F)}  

The operator B is a normal belief operator if  there exists P such that  B represents P. 

We are now in a position to define belief in terms of preferences. Savage's notion of belief captures the 

idea that  if the individual's preferences never depend on anything that  happens when event E does not 

occur, then the individual believes E .  If the individual is ever concerned about  what  happens when E does 

not occur, then the individual cannot believe E.  This is closely related to Savage's notion of null events: 

an individual (Savage) believes an event E if the complement of E is Savage-null. 

D e f i n i t i o n  2 Belief operator B** represents Savage belief of  preference relations { ~ } ~ , e n  i f  

B**(E) = {w E n[(ZE,Z-E) ~'~ (XE,V-E) Vx, y ,z  • Rn}.  

The associated possibility correspondence is defined as: 

P**(w) = {w' E fll3x, y ,z  • a n such that  (x~,,z_~,) ~ (y~,,z_~,)}. 
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This notion of belief arises naturally in the standard expected utility model, where an event is believed 

if and only if it is assigned probability one by the decision maker's (subjective) probability measure. It is 

also possible to define alternative notions of belief. 

Def in i t ion  3 Be//ef operator B* represents strong belief of preference relations {..~}~en ff  

B*(E) = e al(x ,z-s) (yE, W >> y, ,y,v,z e Ra}.  

The associated possibility correspondence is defined as: 

P*(w) = {w' E f~13x >> y >> z E ti. n such that  (x~,,z_~,) ~ y}. 

Strong belief formalizes the intuition that  strict dominance on the event that  is believed should be suffi- 

cient to determine the direction of preference, regardless of the outcome on the rest of the space. When 

preferences have an LEU representation, an event is strongly believed if it is assigned probability one by the 

decision maker's first-order beliefs. Savage belief, by contrast, requires that  each of the decision maker's 

beliefs assign probability one to the event that  is believed. 

We may also consider the following strengthening of strong belief, which I will call strong* beliefi 

/~(E) = {w E ~I(xE,z_E) ~ (yE, V-E) VX >> y ,x , y , v , z  E R~}. 

The associated possibility correspondence then becomes: 

/5(w) = {w' E nl3x >> y >> z E l:t n such that (x~,, z_~,) ~'w Y}. 

A notion of belief which utilizes a much stronger notion of possibility is weak belief. 

Def in i t ion  4 Be//e[ operator B represents weak belief of preference relations { ~ } ~ e n  ff  

B(E) = {w E fll P(w) C E}. 

where 

P(w) = {w' E nl(Vx >> y)(3z << y) such that  (x~,,z_~,) ~ y}. 

When preferences have an MEU representation, a state is weakly possible if it is assigned positive 

probability by each of the probability measures in the decision maker's set of conditional beliefs. An event 

is weakly believed if it contains every state assigned positive probability by all the measures in the belief 

set. By contrast, Savage or strong belief would require that  the event believed is assigned probability one 

by all measures in the set of beliefs, with a state being considered possible if there exists a measure in the 

belief set which assigns positive probability to it. 
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3 I n t e r a c t i v e  b e l i e f s  

I now extend this framework to situations with two agents. I consider 2-player, finite action gaines, 

consisting of a finite set of players I = {1, 2}, finite pure strategy spaces Si (i = 1, 2), with typical element 

si, and payoff functions gi : S1 × $2 ~ R .  Following Aumann and Brandenburger (1995), I define an 

interactive belief system as follows. Each player has a finite set of types, Ti, and 

• for each type ti, i # j ,  a preference relation ~t~ over the set of "acts" R T~ , and 

• an action function fl : Ti ~ Si, which maps each type of a player to his strategy space. 

A type is thus a formal description of a player's actions and preferences (and thus beliefs). For simplicity, 

I restrict payoff functions to be the same across all types of a given player, and assume that these are 

"common knowledge" (loosely speaking). The subjective uncertainty faced by player i is then represented 

by player j ' s  type space. Thus, strategy choice si by player i induces the act [g~(si, fj(tj))]t~eTi, which is 

a vector of (utility) outcomes. 

I assume that each player knows his own type. This implies that from the point of view of type ti of 

player i, while the state space consists of pairs (ti, t j ) , t j  E Tj, the relevant uncertainty for this type of 

player i is summarized in the space Tj. 

Defini t ion 5 A belief operator for player i maps subsets of the state space ~ = T1 × T2 to itse/?." i.e., 

Bi : 2 n ~ 2 ~. Consider events of the form A = A1 × A2, where A1 ~ T1 and A2 C T2. Since each player 

knows his own type, we can deS.he operators 1~1 and 132, where 131 : 2 T2 ~ 2 T' and vice versa, such that 

Bi (A1 x A2) = (A1 N/~l(A2))  x T2 and B2(A1 x A2) = T1 x (A2 n B2(A1)) • 

The belief operator/31 specifies the subsets of T2 that player 1 believes: that is, tl E ./31 (A2) ff and only if 

type tl of player 1 believes that player 2 is some type in A2. Then the event Bi(A1 x A2), which can be 

read as "player 1 believes the event A," consists of all pairs (t~,t2), where t~ E Ai N/~l(A2) and t2 E T2. 

Note that this allows for the possibility that player 1 is wrong about player 2, but not that he is wrong 

about his own type. 

The "local" belief operator/3i may be required to have the following logical properties. For all Aj, Fj C 

B1 : t~i(Tj) = Ti. 

B2 :/3i(0) = {~. 

Ba : n B (Fj) c n 

B 4 :  Aj C Fj ~ Bi(Aj) C t~i(Fj). 

The logical properties of belief can be related to restrictions on preferences. Morris (1997) shows that 

if preferences satisfy [P1]-[P4], Savage belief satisfies [B1]-[B4] and that if preferences satisfy [P1]-[P4] and 
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[P5*], strong belief satisfies [B1]-[B4]. In addition, ff preferences satisfy [P1]-[P4], [P5*] and [P7], then 

Savage and strong belief are equivalent. If preferences satisfy [P6] and [PT], then Savage, strong*, strong 

and weak belief are equivalent. 

Morris (1997, Lemma 1) shows that adding fu~her syntactic restrictions yields the richer semantic struc- 

ture for belief typically assumed by economists, which requires that possibility correspondences partition 

the state space. 

The "composite" belief operator Bi inherits logical properties from the "local" belief operator/~i. For 

instance, ff/3i satisfies [B1], so that t31(Tj) = Ti, then it follows that Bi(~)  = (Tint3i(Ti)  ) x Tj = Ti x Tj =- 

~. Notice that if/~i satisfies [B1], .Bi(Tj) = Bi(Bi(Tj) ) .  

Defini t ion 6 Consider an event A C_ T1 x T2, where A = A1 x A2. Denote the event "everyone believes 

A " by B .  ( A ). Then 

B, (A) = B1 (A) n B2 (A). 

The event "everyone believes that everyone believes A"  can then be denoted 

[B.]2(A) _= B . ( B . ( A )  ) = Bi  (B . (A )  ) n B2(B . (A)  ) = B1 (Bi(A) n B2(A) ) N B2 (Bi  (A) n B2(A)), 

and so on. The event "A is common belief" is thus 

c o  

C(A)  = n [B*]k(A)" 
• k = l  

Belief operators defined on players' type spaces thus provide us with a framework for expressing players' 

beliefs independent of any particular assumptions on preferences. Common belief is then defined simply 

as the iterated application of the appropriate belief operator. 

4 Beliefs  in G a m e s  

In this section, I investigate the epistemic foundations of iterative dominance. For now, I restrict attention 

to pare strategies, so that each player only plays pure strategies, and views the other player as doing so as 

well. In this framework, the event "player i is rational", as perceived by player j ,  corresponds to 

= e fj(tj))]  eT  V e 

That is, a rational type of player i will only take an action that is optimal in the sense of being at least 

as good as any other action avMlable to him. A strategy si is then a best response for player i if there 

exists some type ti of player i such that f~(t~) = si and ti is rational in the sense defined above. With this 

framework in hand, we can investigate strict and weak dominance. 
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! Defini t ion 7 A strategy si is dominated i f  there exists s~ E S~ such that 

g (s ,si) vs¢ est. 

Let U ~  be the set of strategies of player i that survive iterated deletion of strictly dominated strate- 

gies, where dominance is by pure strategies. The first result is that with strong assumptions on what 

players know, rational players will play iteratively undominated strategies, regardless of the particular 

representation of their preferences. 

P r o p o s i t i o n  1 /n the 2-player, finite action game < S1,S2 ,g l ,g2  > let (h,t2) E C(Ri x R2), where 

be//ef is defined as Savage or strong* belie£ Suppose that preferences satisfy [P1]-[P4] and [P5*]. Then, for 

i = 1, 2, fi(ti) E U~ °. When preferences satisfy [P7] in addition, the result also holds ff t~l and JB2 are 

defined as strong be//e£ 

When the notion of belief is weakened further, it is not always possible to rule out play of iteratively 

strictly dominated strategies. If players have MEU preferences, then common belief of rationality may still 

imply that they play iteratively dominated strategies. 

Ryan (2000) argues that one reason to object to weak belief is that it sometimes fails to satisfy logical 

coherence, i.e., that it can fail [B2]. This can happen for MEU preferences if the intersection of the supports 

of the decision maker's beliefs is empty, so that no state is considered possible. The following example 

shows that, even when weak belief satisfies [B2], it can be too weak to rule out very much. 

Example  1 Consider the following 2-player game. 

2 

l r 

1 U 2,1 1,0 

D 1,2 2,1 

Let T1 = {tl,t~} and T2 = {t2,t~,t~}. Suppose that players have MEU preferences, with utilities 

denoted by {ut, }t, ET,, and belief sets {At, }t, ET," 

Now if player 2 is rational, then she will never play r, which is strictly dominated for her. Once r is 

eliminated, D is strictly dominated for player 1, so that the unique outcome that survives iterated deletion 

of strictly dominated strategies is (U, l). Let R2 = {t2} be the event "player 2 is rational"; then ff2(t2) = I. 

Suppose that f2(t~) = f2(t~) -- r and •t2 = (/~2}, where  P22(il) = 1 for all t2 E T2. I am interested in 

when player 1 will prefer the act induced by D, (1R2,2-R2), over the one induced by U, (2R2,1-R2). Let 
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f l ( t ' l )  = D, and A/1 be the convex hull of {/~I,P~}, where the weights placed on the different states are: 

o - 3 

2 0 

Then at  ( t l ,~2),  the only state that player 1 considers possible is t2, and the only state that player 2 

considers possible is t:. Notice that although player 1 believes that player 2 is rational, the maximum 

weight he ever places on the event R2 is 1 ~, whereas the minimum weight he places on its complement, 

which is not believed, is ~. Hence 

u/~(U) = rain [ p l ( R 2 ) 2 + p l ( - R 2 ) 1 ]  = min [ 2 p l ( R 2 ) + ( 1 - p l ( R 2 ) ) ]  
Pl E/kQ Pl E&Q 

1 
= 1 +  rain p x ( R 2 ) = l +  

and 

U/l(D ) = rain [p l (R2)  1 - } - p l ( - R 2 )  2] = 1 -1- m i n  
Pl E/if, x Pl E/x~ x 

2 
p l ( -R2)  = 1 + ~, 

so that u.~l (D) > tql (U), and player 1 will (rationally) prefer playing strategy D to strategy U, despite 

weakly believing that player 2 is rational and will therefore not play r. Therefore, common weak belief of 

rationality does not rule out play of iteratively strictly dominated strategies, o 

When preferences are taken to satisfy admissibility, it is possible to rule out play of weakly dominated 

strategies. Consider two strategies si, s~ E Si, such that gi (s~, s j) > gi (si, s j) Vsj E Sj, with strict inequality 

for some s~ e Sj. If there exists t~ e Tj such that fj(t~) = s~, so that gi(s~, f j ( t j ) )  > g~(si, f j ( t j ))  Vtj • Tj, 

with strict inequality for t~, admissibility implies Gi(s~) ~t, Gi(si), so that type ti of player i will.not play 

the weakly dominated strategy, si. Assume from now on that every action is played by some type of each 

player. 

When preferences are admissible, Savage belief is uninformative in that nothing non-trivial is ever 

believed (Morris (1997, Lemma 3)). We may therefore ask what the implications of common strong belief 

of rationality are for the play of undominated strategies. 

Let S ~  be the set of strategies which survive one round of deletion of weakly dominated strategies, 

followed by subsequent rounds of deletion of strictly dominated strategies, where domination is by pure 

strategies. 

P ropos i t i on  2 /n the 2-player, finite action game < S1,S2,gl,g2 > when preferences satisfy [P1]- [Phi, 

/ f( t l , t2)  • C(R1 x R2), where belief is defined as strong befief, then, for i = 1, 2, fi(ti) • S~ x~. 

Brandenburger (1992) considers the case of preferences which satisfy LEU. He defines the set of "permis- 

sible" strategies as those which are chosen if there is common first-order knowledge of rationality (common 
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strong belief), and shows that this is equivalent to the set of strategies which survive the iterated deletion 

procedure above, where dominance is defined to include dominance by mixed strategies. 

5 Equilibrium 

This section considers equilibrium concepts for players in 2-person games. 

Defini t ion 8 A strategy profile s* = ( s~, s~) is a pure-strategy Nash Equilibrium if, for i = 1, 2, 

* * - ' s '  s * "  V s ~ E S i .  gi (S i ,S- i )  ~ $1i~ i, - i )  

I now show that rationality and mutual Savage or strong* belief of actions imply that players' choices will 

be a Nash equilibrium. 

P ropos i t i on  3 Let s* = (s~, s~) be a pair of  actions. For i = 1, 2, let 

Q, = {t~ E T, : f~(ti) = s;}. 

Suppose for some t* = (t~,t~) that t* E R1 x R2, and t* E B.(Q1 x Q2), where/~1 and B2 denote Savage 

or strong* belief. Suppose that preferences satisfy [P1] - [P4] and [PS*]. Then s* is a Nash equilibrium. I f  

preferences satisfy [P1]-[P4] and [P5], then strong belief is sufficient to ensure that s* is a Nash equilibrium. 

Strong* and Savage belief thus serve as benchmark notions. In proposition 3, belief of actions is 

sufficiently strong to rule out either player deviating unilaterally given what the other player is playing. 

However, once we relax belief of actions to mean weak belief, we can no longer rule out non-Nash behavior. 

Example  2 Consider the following 2-player game. 

2 

l r 

1 t- 1,3 2,4 

b 2,2 1,1 

Players are assumed to have MEU preferences {ut,}t, eT~, {At~}~,eT~. Let [b] denote the event that 

player 1 plays the strategy b, and let Jr] denote the event that player 2 .plays the strategy r. Strong or 

Savage belief of [r] implies that, for any tl E/~1 ([r]), 61([r]) = 1 V 61 E At1. Clearly, this implies that player 

1 would prefer the act induced by t, (1-[r], 2It]) over the one induced by b, which is (2-[r], l[r]), so that it 

is not possible to support play of b when player 1 strongly believes that player 2 is playing r. However, 

suppose that type t~ of player 1 weakly believes that player 2 is playing r. Weak belief imposes only the 
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restriction that, for all t2 ¢ [r], there exists Pl E Z~t~ such that Pl (t2) = 0. Suppose minpl Ezxq Pl ([r]) = 1/4 

and minmezx,i pl(-[r])  = 1/3. Then 

1 1 
= rain [1 - q - p l ( - - [ r ] ) ]  = 1 q- uh(t)  : mEz~,,rain [1 ++pl([r])] = 1 + ~  < Urn(b) mE~,~ 3" 

Thus type t~ of player 1 prefers playing strategy b, even though he weakly believes player 2 is playing r. 

Similarly, for type t~ of player 2, suppose that minp2ez~,~ p2(-[b]) = 9/16. Then 

41 43 
ut~ (l) = ~ < Urn(r)= 1"6 " 

So player 2 prefers playing strategy r despite weakly believing that player 1 plays b. Hence weak belief of 

actions is not sufficient to rule out non-Nash behavior, o 

The logical next step is to consider equilibrium in mixed strategies. There are two accepted interpre- 

tations of mixed strategy Nash Equilibrium. The traditional interpretation is that players actually mix 

according to the equilibrium strategies; the second interpretation holds that player l 's mixed strategy rep- 

resents not his actual action but player 2's beliefs about what pure strategy player 1 is going to pick. As 

is well known, however, this equivalence between beliefs and strategies breaks down when players do not 

have expected utility preferences: when beliefs are not represented by a single probability measure, then 

a player's mixed strategy has no ready interpretation as the other player's belief over her possible pure 

strategies. 

In the present context, the appropriate counterpart to an equilibrium in beliefs may be defined following 

Lo (1996) in terms of preferences. 

Defini t ion 9 {~t~, .~.ti } is a Nash Equilibrium in preferences ff 

1. there exists Fi C Si such that the event -Fi ,  where Fi = f~l(Fi) ,  is null with respect to ~tj, j # i; 

and 

S I ! 2. for M si E ri, Gi(si) ~_t, Gi( i) v s~ ~ &. 

In words, the preferences form a Nash Equilibrium if the event that each player is irrational is null from 

the point of view of the other player, and each player's action is optimal given her preferences. 

Proposition 4 Suppose for some t* = (t~,t~) that players are rationM and that this is mutual belief, so 

that t* E R1 x R2, and t* E B.(R1 x R2). Let player l's belief regarding player 2 be F2 C T2, so that 

t~ E BI(F2); similarly, let t~ E/~2(F1). Suppose that t* E B.(/~I(F2) x/~2(F1)), i.e., that the beliefs are 

mutually believed. I f  the belief operator is normal, then {_~q, ~_t~ } is a Nash Equilibriura in preferences. 
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This result can be viewed as a general analogue to Theorem A in Aumann and Brandenburger (1995). 

It is chiefly remarkable for what it does not say: because it imposes no explicit structure on preferences, 

and very little structure on beliefs, it does not permit us to evaluate the different notions of equilibrium 

that rely on specific representations of preferences. Moreover, it does not solve the problem of mixed 

versus pure strategies: if all definitions were in terms of mixtures, then the analogue of the proposition 

with preferences and belief defined over mixed strategies would go through 2 . 

6 Conc lus ion  and E xtens i o n s  

This paper has offered a unified language for thinking about interactive beliefs in the context of non- 

expected utility maximisers. By exploring a minimal preference structure compatible with games from a 

subjective viewpoint, the paper provides a framework within which extensions of single-person decision 

theory to games can be compared and evaluated: By considering the relation of beliefs to preferences, the 

paper makes it possible to identify the factors that drive notions of dominance and equilibrium. The paper 

also identifies some of the weaknesses of the existing extensions of non-expected utility theory to games. 

The paper provides a foundation for future work relating preferences and logical properties of belief 

in games. Work remains to be done on relating the minimal dominance notions explored here to general 

notions of rationallzability and equilibrium, and on providing foundations. Also, work by Morris (1996) 

shows how substantive properties of belief may be related to preferences; the implications of these properties 

for interactive beliefs in games remain to be explored. The extension to n players is also a subject for future 

work. 
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