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Abstract

We introduce a uniform distance seman-
tics for different paradigms that require
nonmonotonic and paraconsistent reason-
ing, among which are mediators of inde-
pendent data-sources, integrators of pri-
oritized knowledge-bases, operators for
iterated belief revision, and analytic tools
of decision support systems. We show
that the consequence relations that are
induced by our framework share some de-
sirable properties and demonstrate this
by relevant applications.

1 INTRODUCTION

Many realistic decision aid problems are fraught
with facets of ambiguity, anomalies and conflicts.
This commands the incorporation of declarative
means for expressing how to reason in various con-
texts involving decision or choice. Classical logic,
the most advocated formalism for reasoning with
mathematical theories, is not useful for this task
as, for instance, any conclusion classically follows
from an inconsistent set of assumptions. Addition-
ally, by its definition, classical logic is monotonic,
while human thinking is non-monotonic in nature,
that is, the set of conclusions is not necessarily
non-decreasing in the size of the premises.

Distance semantics is a subtle way of handling dy-
namically evolving and possibly contradictory in-
formation, as it provides quantitative means for
drawing ‘rational’ conclusions form a given set of

assumptions. Indeed, reasoning with distance se-
mantics is a cornerstone behind many formalisms
for maintaining uncertainty, such as operators
for modelling belief revision (e.g., [7, 16, 18, 24,
29]), methodologies for merging independent data-
sources [20, 21, 25], consistent query answering in
database systems [1, 3, 4, 9, 10, 26], and several ar-
eas in the context of social choice theory, such as
group decision making [22], preference representa-
tion [23], and judgment aggregation [17, 27].

The goal of this paper is to introduce a uniform
framework for the above paradigms and many
other formalisms that are based on distance se-
mantics. For this, we define a possible-world se-
mantics, derived by distance considerations, and
consider different metrics on the universe (i.e., all
the possible worlds). Each metric induces a dif-
ferent consequence relation for reasoning with the
underlying information.

The rest of this paper is organized as follows: in
the next section we introduce the framework and
the family of distance-based entailments that it
induces. In that section we also show some ba-
sic properties of the distance entailments. In Sec-
tion 3 we consider situations in which the avail-
able data is prioritized, and extend the definition
of the distance-based entailments accordingly. In
Section 4 we demonstrate the applicative potential
of our framework and in Section 5 we conclude.

2 DISTANCE-BASED
ENTAILMENTS

The intuition behind our approach is simple.
Given a distance function d on a space of inter-

33



pretations, reasoning with a given set of premises
Γ is based on those interpretations that are ‘d-
closest’ to Γ (called the most plausible interpreta-
tions of Γ). This set of interpretations determine
the Γ-conclusions, which means that, unlike clas-
sical logic, our formalisms are non-monotonic and
do not become trivial in the presence of contra-
dictions. For instance, it is intuitively clear that
interpretations in which q is true should be closer
to Γ = {p,¬p, q} than interpretations in which q is
false, and so q should follow from Γ while ¬q should
not follow from Γ, although Γ is not consistent. In
what follows we formalize this idea.

2.1 PRELIMINARIES

In the sequel, we consider finite sets of premises
(theories) in a propositional language L with a fi-
nite set Atoms of atomic formulas. We denote by
Λ the space of the two-valued interpretations on
Atoms. The set of atomic formulas that occur in
the formulas of a theory Γ is denoted Atoms(Γ),
and the set of models of Γ (that is, the interpreta-
tions ν ∈ Λ such that ν(ψ) = t for every ψ ∈ Γ) is
denoted mod(Γ).

Definition 1 A pseudo distance on Λ is a total
function d : Λ×Λ→ R+ that is symmetric (∀u, v∈
Λ d(u, v) = d(v, u)) and preserves identity (∀u, v∈
Λ d(u, v) = 0 iff u = v). A distance on Λ is a
pseudo distance on Λ that satisfies the triangular
inequality (∀u, v, w∈Λ d(u, v) ≤ d(u,w)+d(w, v)).

Example 2 It is easy to verify that the following
two functions are distances on Λ.

• The drastic distance:

dU (ν, µ) = 0 if ν = µ, otherwise dU (ν, µ) = 1.

• The Hamming distance:

dH(ν, µ) = |{p ∈ Atoms | ν(p) 6= µ(p)} |. 1

Definition 3 A numeric aggregation function f
is a total function that accepts a multiset of real
numbers and returns a real number. In addition,
f is non-decreasing in the values of its argument,2

1I.e., dH(ν, µ) is the number of atoms p such that
ν(p) 6= µ(p). This function is also known as the Dalal
distance [12].

2That is, the function value is non-decreasing when
an element in the multiset is replaced by a larger ele-
ment.

f({x1, . . . , xn}) = 0 iff x1 = . . . = xn = 0, and
∀x ∈ R f({x}) = x.

The aggregation function in Definition 3 may be,
e.g., a summation or the average of the distances,
the maximum value among those distances (which
yields a worst case analysis), a median value (for
mean case analysis), and so forth. Such functions
are common in data integration systems (see, e.g.,
Section 4).

Definition 4 Given a theory Γ = {ψ1, . . . , ψn},
an interpretation ν ∈ Λ, a pseudo-distance d on Λ,
and an aggregation function f , define:

• d(ν, ψi) = min{d(ν, µ) | µ ∈ mod(ψi)}
• δd,f (ν,Γ) = f({d(ν, ψ1), . . . , d(ν, ψn)}).

Definition 5 A (pseudo) distance d is unbiased ,
if for every formula ψ and every two-valued in-
terpretations ν1, ν2, if ν1(p) = ν2(p) for every
p ∈ Atoms(ψ), then d(ν1, ψ) = d(ν2, ψ).

The last property assures that a distance between
an interpretation and a formula depends only on
the atoms that appear in the formula, and so it is
not ‘biased’ by irrelevant atoms. Note, e.g., that
the distances in Example 2 are unbiased.

The next definition captures the intuition behind
distance semantics that the relevant interpreta-
tions of a theory Γ are those ones that are δd,f -
closest to Γ.

Definition 6 The most plausible valuations of Γ
(with respect to a pseudo distance d and an aggre-
gation function f) are the interpretations ν ∈ Λ
that belong to the following set:

∆d,f (Γ) =
{
ν ∈ Λ | ∀µ ∈ Λ δd,f (ν,Γ) ≤ δd,f (µ,Γ)

}
.

Corresponding consequence relations are now de-
fined as follows.

Definition 7 For a pseudo distance d and an ag-
gregation function f , define Γ |=d,f ψ if ∆d,f (Γ)⊆
mod(ψ). That is, conclusions should follow from
all the most plausible valuations of the premises.

Example 8 Let Γ = {p, q, r,¬p ∨ ¬q, r ∧ s}. This
theory is not consistent, and so everything clas-
sically follows from it, including, e.g., ¬r, which
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seems to be a very strange conclusion in this case.3

Using distance-based semantics, this anomaly can
be lifted. The following table lists the distances
between the relevant valuations and Γ according
to several common metrics:

p q r s δdU,Σ δdH,Σ δdH,max

ν1 t t t t 1 1 1
ν2 t t t f 2 2 1
ν3 t t f t 3 3 1
ν4 t t f f 3 4 2
ν5 t f t t 1 1 1
ν6 t f t f 2 2 1
ν7 t f f t 3 3 1
ν8 t f f f 3 4 2
ν9 f t t t 1 1 1
ν10 f t t f 2 2 1
ν11 f t f t 3 3 1
ν12 f t f f 3 4 2
ν13 f f t t 2 2 1
ν14 f f t f 3 3 1
ν15 f f f t 4 4 1
ν16 f f f f 4 5 2

Here, ∆dU,Σ(Γ) = ∆dH,Σ(Γ) = {ν1, ν5, ν9}, thus
Γ |=dU,Σ r and Γ |=dH,Σ r, while Γ 6|=dU,Σ ¬r and
Γ 6|=dH,Σ ¬r. As intuitively expected, s behaves
similarly. Note also that the atoms p, q that are in-
volved in the inconsistency are not deducible from
Γ, nor their complements. The entailment |=dH,max

is more cautious; it does not allow to infer neither
¬r (as expected) nor r, but the weaker conclusion
r ∨ s is deducible.

2.2 BASIC PROPERTIES OF |=d,f

2.2.1 Paraconsistency

Paraconsistent logics [11, 28] are formalisms that
tolerate inconsistency and do not become trivial in
the presence of contradictions. As human knowl-
edge and thinking necessarily requires inconsis-
tency, conflicting data is unavoidable in practice,
but (unlike the case of classical logic) this should
not block the ability to draw ‘rational’ conclusions
from contradictory theories. For instance, in Ex-
ample 8, although Γ is not consistent, there is no
reason to infer ¬r from it.

3Indeed, r is not part of the inconsistent fragment
of Γ, therefore it is not sensible in this case to conclude
its complement.

Proposition 9 For every pseudo distance d and
aggregation function f , |=d,f is paraconsistent.

Proof. By the fact that for every Γ, ∆d,f (Γ) 6= ∅
(as the minimal δd,f -distance from Γ over a finite
space of interpretations is always obtained). Thus,
for every formula ψ such that there exists a valu-
ation ν∈∆d,f (Γ) for which ν(ψ) = f, it holds that
Γ 6|=d,f ψ. �
Unbiasedness of the distance function allows us
to strengthen Proposition 9, as in this case a for-
mula never follows from a theory unless they share
propositional atoms.

Proposition 10 Let d be an unbiased pseudo dis-
tance and f an aggregation function. For every
theory Γ and a non-tautological formula ψ in L
such that Atoms(Γ)∩Atoms({ψ}) = ∅, it holds that
Γ 6|=d,f ψ.

Proof. Let Γ = {ψ1, . . . , ψn} and ν ∈ ∆d,f (Γ).
If ν(ψ) = f we are done. Otherwise, consider a
valuation µ that is the same as ν on Atoms(Γ)
and µ(ψ) = f. Such a valuation exists since ψ
is not a tautology, the value of µ(ψ) depends
only on the assignments of µ on Atoms({ψ}), and
Atoms(Γ) ∩ Atoms({ψ}) = ∅. Now, as d is unbi-
ased, d(µ, ψi) = d(ν, ψi) for every ψi ∈ Γ. Thus,
δd,f (µ,Γ) = δd,f (ν,Γ), and so µ∈∆d,f (Γ) as well.
Hence, Γ 6|=d,f ψ. �
On the other hand, when the set of premises is
consistent, there is no reason to draw conclusions
that are different from those of standard classical
logic. The following propositions show that this is
exactly the situations in our framework:

Proposition 11 Let d be a pseudo distance and
f an aggregation function. For every consistent Γ,
∆d,f (Γ) = mod(Γ).

Proof. Let Γ = {ψ1, . . . , ψn}. If ν is a model of
Γ, then d(ν, ψi) = 0 for every 1 ≤ i ≤ n, and so
δd,f (ν,Γ) = 0 as well. Now, since for every valua-
tion µ, δd,f (µ,Γ) ≥ 0, necessarily ν ∈ ∆d,f (Γ).
For the converse, suppose that ν 6∈ mod(Γ). Then
ν does not satisfy ψj for some 1 ≤ j ≤ n, and so
d(ν, ψj)>0. By Definition 3, f is strictly positive
whenever it has at least one strictly positive argu-
ment and the other arguments are non-negative.
We have, then, that δd,f (ν,Γ) > 0. On the other
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hand, as mod(Γ) 6= ∅, there is a model µ of Γ, for
which δd,f (µ,Γ) = 0. It follows that ν 6∈ ∆d,f (Γ).
�

Corollary 12 Denote by |= the standard entail-
ment of classical logic. For every classically con-
sistent set of formulas Γ and formula ψ, Γ |= ψ iff
Γ |=d,f ψ.

By Proposition 9 and Corollary 12 we have, there-
fore, the following desirable property:

Corollary 13 Let d be an unbiased pseudo dis-
tance and f an aggregation function. Then |=d,f

is the same as the classical entailment for consis-
tent premises and is non-trivial otherwise.

2.2.2 Nonmonotonicity

Another characteristic property of |=d,f is its non-
monotonic nature, which implies that conclusions
may be retracted in light of new information. In
Example 8, for instance, we have that for d = dU

or d = dH , Γ |=d,Σ r, but it is easy to check that
Γ,¬r 6|=d,Σ r. As the following proposition shows,
this is not a coincidence.

Proposition 14 For every unbiased pseudo dis-
tance d and aggregation function f , |=d,f is non-
monotonic.

2.2.3 Adaptivity

Ataptivity, due to Batens [5, 6], is the ability to
handle contradictory theories in a nontrivial way
and at the same time to presuppose the consis-
tency of all the formulas ‘unless and until proven
otherwise’. Consequence relations with this prop-
erty adapt to the specific inconsistencies that occur
in the theories.

Example 15 The Disjunctive Syllogism should
not be applied for concluding q from {p,¬p,¬p∨q}.
On the other hand, in the case of {p,¬p, r,¬r∨ q},
applying the Disjunctive Syllogism to r and ¬r∨ q
may be justified by the fact that the subset of for-
mulas to which the Disjunctive Syllogism is applied
is not affected by the inconsistency of the whole
theory, therefore inference rules that are classically
valid can be applied to it.

The next proposition shows that for hereditary ag-
gregation functions (see Definition 16 below) |=d,f

is adaptive: if a given theory can be split up to a
consistent and an inconsistent parts, then every as-
sertion that is not related to the inconsistent part,
and which classically follows from the consistent
part, is entailed by the whole theory.

Definition 16 An aggregation function f is
called hereditary , if whenever f({x1, . . . , xn}) <
f({y1, . . . , yn}), also f({x1, . . . , xn, z1, . . . , zm}) <
f({y1, . . . , yn, z1, . . . , zm}). 4

Proposition 17 Let d be an unbiased pseudo dis-
tance and f a hereditary aggregation function.
Suppose that Γ is a theory that can be represented
as Γ′ ∪Γ′′, where Γ′ is a classically consistent the-
ory and Atoms(Γ′) ∩ Atoms(Γ′′) = ∅. Then for ev-
ery formula ψ such that Atoms(ψ)∩Atoms(Γ′′) = ∅,
it holds that if Γ′ |= ψ then Γ |=d,f ψ.

Proof . We first show the following lemma:

Lemma 17–A. Let d be a non-biased pseudo dis-
tance and f a hereditary aggregation function. If
Γ |=d,f ψ then Γ, φ |=d,f ψ for every φ such that
Atoms(Γ ∪ {ψ}) ∩ Atoms(φ) = ∅.
Indeed, let Γ = {ψ1, . . . , ψn}. If ψ is a tautology
the lemma trivially holds. Otherwise, let µ be a
valuation such that µ(ψ) = f. As Γ |=d,f ψ, neces-
sarily µ /∈∆d,f (Γ), and so there is a ν∈∆d,f (Γ) for
which df (ν,Γ)<df (µ,Γ). In oder words,

f({d(ν, ψ1), . . . , d(ν, ψn)}) <
f({d(µ, ψ1), . . . , d(µ, ψn)}).

Again, since Γ |=d,f ψ, ν(ψ) = t. Now, consider a
valuation σ, defined for every atom p as follows:

σ(p) =

{
ν(p) if p ∈ Atoms(Γ ∪ ψ),
µ(p) otherwise.

Note that σ(p) = ν(p) for all p ∈ Atoms(ψ), thus
σ(ψ) = t. Now, as Atoms(Γ∪{ψ})∩Atoms(φ) = ∅,
d is non-biased, and f is hereditary, we have that

df (σ,Γ ∪ {φ})
= f({d(σ, ψ1), . . . , d(σ, ψn), d(σ, φ)})
= f({d(ν, ψ1), . . . , d(ν, ψn), d(µ, φ)})
< f({d(µ, ψ1), . . . , d(µ, ψn), d(µ, φ)})
= df (µ,Γ ∪ {φ}).

4Note that hereditary, unlike monotonicity, is de-
fined by strict inequalities. Thus, for instance, sum-
mation of distances is hereditary (as distances are non-
negative), while the maximum function is not.
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Thus, for every valuation µ such that µ(ψ) = f
there is a valuation σ such that σ(ψ) = t and
df (σ,Γ ∪ {φ}) < df (µ,Γ ∪ {φ}). It follows that
the elements of ∆d,f (Γ ∪ {φ}) must satisfy ψ, and
so Γ, φ |=d,f ψ.

Now, to complete the proof of Proposition 17, sup-
pose that Γ′ |=ψ. Then by Corollary 12, Γ′ |=d,f ψ.
Thus, as Atoms(Γ′ ∪ {ψ}) ∩ Atoms(Γ′′) = ∅, we
have, by the Lemma 17–A, that Γ |=d,f ψ. �

Note 18 The condition on the aggregation func-
tion in Proposition 17 is indeed necessary. To see
this, consider the theory Γ in Example 8. This
theory can be split up to a consistent subtheory
Γ′ = {r, r∧ s} and an inconsistent subtheory Γ′′ =
{p, q,¬p ∨ ¬q}. Also, Atoms(Γ′) ∩ Atoms(Γ′′) = ∅.
Yet, although Γ′ |= r, we have that Γ 6|=dH,max r.
Indeed, max is not a hereditary function, so adap-
tivity is not assured here. It follows, then, that
unlike |=dH,Σ, which is adaptive by Proposition 17,
|=dH,max is not adaptive.

3 PRIORITIZED THEORIES

We now extend the distance-based semantics con-
sidered above to prioritized theories. Reasoning
with prioritized information is very frequent in
everyday life, and it is a cornerstone of many
paradigms of knowledge representation and rea-
soning, such as annotated logic [30] and possibilis-
tic logic [15]. Moreover, in many cases the na-
ture of the underlying data dictates preferences.
This is the case, for instance, in iterated belief re-
vision [13, 14, 19], where more recent data is con-
sidered more accurate and so it is preferred over
older one, in database systems, where integrity
constraints have higher precedence over database
facts, and in consistency restoration of ranked
knowledge-bases [2, 8], where pieces of information
may come from different sources with different re-
liability. In what follows we introduce a unifying
distance-based approach for defining the underly-
ing semantics of such systems.

Definition 19 An n-prioritized theory is a set
Γ〈n〉 of formulas in L, partitioned into n ≥ 1 pair-
wise disjoint sub-theories Γi (1≤ i≤n). We denote
this by Γ〈n〉 = Γ1 ⊕ Γ2 ⊕ . . .⊕ Γn.

In what follows we shall usually write Γ instead
of Γ〈n〉. Intuitively, formulas in higher levels of Γ
are of higher priority than those in lower levels.
That is, if 1 ≤ i < j ≤ n, then every formula in
Γj is preferred over the formulas in Γi.5 Next we
formalize this intuition by a distance semantics.

Definition 20 Let d be a pseudo distance and f
an aggregation function. For an n-prioritized the-
ory Γ = Γ1 ⊕ Γ2 ⊕ . . .⊕ Γn consider the following
n sets of interpretations:

• ∆n
d,f (Γ) =

{
ν ∈ Λ | ∀µ ∈ Λ

δd,f (ν,Γn) ≤ δd,f (µ,Γn)
}

• for every 1 ≤ i < n,
∆n−i
d,f (Γ) =

{
ν ∈ ∆n−i+1

d,f (Γ) | ∀µ∈∆n−i+1
d,f (Γ)

δd,f (ν,Γn−i) ≤ δd,f (µ,Γn−i)
}

The sequence ∆n
d,f (Γ), . . . ,∆1

d,f (Γ) is clearly non-
increasing, as sets with smaller indices are subsets
of those with higher indices. This reflects the in-
tuitive idea that higher levelled formulas are pre-
ferred over lower levelled formulas, thus the inter-
pretations of the latter are determined by the in-
terpretations of the former.

Let ∆d,f (Γ) be the last set in the sequence (that
is, ∆d,f (Γ) = ∆1

d,f (Γ)). The elements of ∆d,f (Γ)
are the most plausible interpretations of Γ. Again,
these interpretations determine the Γ-conclusions:

Definition 21 Let d be a pseudo distance and f
an aggregation function. A formula ψ follows from
an an n-prioritized theory Γ (notation: Γ |=d,f ψ)
if ∆d,f (Γ)⊆mod(ψ).

Example 22 Consider the following three-leveled
theory:

Γ〈3〉 = Γ1⊕Γ2⊕Γ3 = {¬q, r}⊕{¬p∨ q}⊕{p}.
Then:

Γ〈3〉 |=dH,Σ p, Γ〈3〉 |=dH,Σ q, and Γ〈3〉 |=dH,Σ r,

while

Γ〈3〉 6|=dH,Σ¬p, Γ〈3〉 6|=dH,Σ¬q, and Γ〈3〉 6|=dH,Σ¬r.

Clearly, Definition 21 is a conservative extension
of Definition 7:

5Note that in this writing the precedence is right-
hand increasing .
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Proposition 23 For n = 1 we have that Γ〈n〉 |=d,f

ψ iff Γ |=d,f ψ.

Definition 24 Let Γ be an n-prioritized theory.
For any 1 ≤ i ≤ n, denote by Γ≥i the n − i + 1
highest levels of Γ, that is: Γ≥i = Γi ⊕ . . . ⊕ Γn.
The consistency level con of Γ is the minimal value
i≤n such that Γi∪ . . .∪Γn is consistent. If there is
no such value, let con = n+1 (and then Γ≥con = ∅).

The following proposition is the analogue, for the
prioritized case, of Proposition 11.

Proposition 25 Let d be a pseudo distance
and f an aggregation function. For every n-
prioritized theory Γ with a consistency level con,
∆d,f (Γ≥con) = mod(∪con≤i≤nΓi).

Proof. The proof is obtained by a simple accom-
modation to the prioritized case of the proof of
Proposition 11. �
Some relations to the entailment |= of classical
logic are listed below:

Proposition 26 Let d be a pseudo distance and
f an aggregation function. For every n-prioritized
theory Γ with a consistency level con, we have that

1. Γ≥con |= ψ iff Γ≥con |=d,f ψ. 6

2. Γ≥con |= ψ implies that Γ |=d,f ψ.

3. Γ |=d,f ψ implies that Γ |= ψ.

Proof. The first part of the proposition is a clear
consequence of Proposition 25.
For the second part, note that the definition of
∆d,f implies that ∆d,f (Γ) ⊆ ∆d,f (Γ≥con). Again,
by Proposition 25, ∆d,f (Γ≥con) = mod(Γ≥con), and
so ∆d,f (Γ) ⊆ mod(Γ≥con). Now, if Γ≥con |= ψ, then
ψ is true in every element of mod(Γ≥con), which
implies that ψ must be true in every element of
∆d,f (Γ), thus Γ |=d,f ψ.
The last part holds since if Γ is consistent, i.e.,
con = 1, then by Proposition 25 ∆d,f (Γ)=mod(Γ),
thus Γ |=d,f ψ iff Γ |=ψ. If Γ is not consistent, then
the claim trivially holds, since for every formula ψ,
Γ |= ψ. �

6Here and in what follows, Γ≥con |= ψ means that
every model of the formulas of Γ≥con is a model of ψ.
That is, for the standard satisfaction relation |= one
ignores the priorities among the premises.

Note also, that although |=d,f is non-monotonic,
we have, by items 1 and 2 of Proposition 26, that
Γ≥con |=d,f ψ implies that Γ |=d,f ψ. 7

4 APPLICATIONS

As noted above, distance semantics is in the heart
of different disciplines involving knowledge repre-
sentation and reasoning. Below, we demonstrate
the application potential of our framework in the
context of merging and analyzing constraint data
sources. In this case we have several theories (each
one corresponds to a different source) that may
have different priorities. That is, the underlying
n-prioritized theory is now of the form

Γ = {T 1
1 , . . . , T

1
k1} ⊕ . . .⊕ {Tn1 , . . . , Tnkn

},

where each T ij is a different theory, theories with
the same superscript have the same precedence,
and T i is preferred over T j iff i > j. To handle
this situation we further generalize Definition 20
by incorporating another aggregation function for
merging the sources:

Definition 27 Let d be a pseudo distance and f, g
two aggregation functions. For an n-prioritized
theory Γ = {T 1

1 , . . . , T
1
k1
}⊕ . . .⊕{Tn1 , . . . , Tnkn

} and
every 1 ≤ i ≤ n, let

δd,f,g(ν, T i) = g
({δd,f (ν, T i1), . . . , δd,f (ν, T iki

)}).
Now, consider the following n sets of interpreta-
tions:

• ∆n
d,f,g(Γ) =

{
ν ∈ Λ | ∀µ ∈ Λ

δd,f,g(ν, Tn) ≤ δd,f,g(µ, Tn)
}

• for every 1 ≤ i < n,
∆n−i
d,f,g(Γ)=

{
ν∈∆n−i+1

d,f,g (Γ) | ∀µ∈∆n−i+1
d,f,g (Γ)

δd,f,g(ν, Tn−i) ≤ δd,f,g(µ, Tn−i)
}

The most plausible valuations (with respect to
d, f, g) of Γ are the valuations in ∆1

d,f,g(Γ).

Example 28 Consider the following scenario
(borrowed from [21]) regarding speculations on the

7This also follows from Definition 20. In fact, for
every 1 ≤ i ≤ j ≤ n, if Γ≥j |=d,f ψ then Γ≥i |=d,f ψ.
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stock exchange: Suppose that an investor (repre-
sented by the mediator system) consults four fi-
nancial experts about their opinion regarding four
different shares, denoted s1, s2, s3 and s4. The
opinion of expert i is represented by the theory
(data-source) Ti:

T1 = T2 = {s1, s2, s3},
T3 = {¬s1,¬s2,¬s3,¬s4},
T4 = {s1, s2,¬s4}.

For instance, in our case expert 4 suggests to buy
shares s1 and s2, doesn’t recommend to buy share
s4, and doesn’t have a particular opinion about s3.

In addition, the investor may have further restric-
tions about his or her investments. For instance,
if some share, say s4, is considered risky, buying
it may be balanced by purchasing at least two out
of the three other shares and vice-versa. This pol-
icy may be represented by the following integrity
constraint:

IC = {s4 ←→
(
(s1 ∧ s2) ∨ (s2 ∧ s3) ∨ (s1 ∧ s3)

)}.
Assuming that the experts are equally faithful,
their suggestions may be represented by the 2-
prioritized theory Γ = {T1, T2, T3, T4} ⊕ {IC}, in
which the investor’s constraint about the purchas-
ing policy is of higher precedence than the experts’
opinions. Now, taking the drastic distance dU and
the summation function for the aggregation func-
tions f and g, we get, by Proposition 25, that the
most plausible valuations of Γ belong to the fol-
lowing set:

∆dU,Σ,Σ(Γ) = {ν ∈ mod(IC) | ∀µ ∈ mod(IC)
δd,Σ,Σ(ν, {Ti | 1 ≤ i ≤ 4}) ≤
δd,Σ,Σ(µ, {Ti | 1 ≤ i ≤ 4})}.

The models of IC and their distances to T =
{T1, . . . , T4} are given below.

s1 s2 s3 s4 δdU ,Σ,Σ(νi, T )
ν1 t t t t 5
ν2 t t f t 7
ν3 t f t t 7
ν4 t f f f 7
ν5 f t t t 7
ν6 f t f f 6
ν7 f f t f 6
ν8 f f f f 8

Thus ∆dU ,Σ,Σ(Γ) = {ν1}, and so the investor will
purchase all the four shares.

Clearly, the experts could have different reputa-
tions, and this may affect the investor’s decision.
For instance, assuming that expert 4 has a better
reputation in the eye of the investor, his opinion
may get a higher precedence, yielding the follow-
ing 3-prioritized theory: Γ′ = {T1, T2, T3)⊕{T4}⊕
{IC}. It is interesting to note that in this case
the recommendation of the most significant expert
(number 4) does not comply with the investor’s
restriction. Using the same setting as before (i.e.,
d = dU and f = g = Σ), the investor ends up with
a different investment policy, according to the fol-
lowing tables:

s1 s2 s3 s4 δdU ,Σ,Σ(νi, T4)
ν1 t t t t 1
ν2 t t f t 1
ν3 t f t t 2
ν4 t f f f 1
ν5 f t t t 2
ν6 f t f f 1
ν7 f f t f 2
ν8 f f f f 2

s1 s2 s3 s4 δdU ,Σ,Σ(νi, {T1, T2, T3})
ν1 t t t t 0+0+4 = 4
ν2 t t f t 1+1+3 = 5
ν3 t f t t N.A.
ν4 t f f f 1+1+1 = 3
ν5 f t t t N.A.
ν6 f t f f 1+1+1 = 3
ν7 f f t f N.A.
ν8 f f f f N.A.

Thus ∆dU ,Σ,Σ(Γ′) = {ν4, ν6}, and the decision
would be to purchase either s1 or s2 but not both,
which seems as a ‘fair balance’ between the in-
vestor’s restriction and the recommendation of the
most significant expert (taking into account also
the other recommendations).

5 CONCLUSION

The principle of minimal change is a primary motif
in commonsense reasoning, and it is often implic-
itly derived by distance considerations. In this pa-
per, we introduced a simple and natural framework
for representing this principle in an explicit way,
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and explored the main logical properties of the
corresponding consequence relations. It is shown
that the entailments induced by distance semantics
sustain different aspects of human thinking, such
as non-monotonicity, paraconsistency, and adap-
tivity, and are useful for handling incomplete, in-
consistent, and prioritized information.
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