Knowledge and Efficient Computation

by
Silvio Micali
Computer Science Department
MIT
545 Technology Square
Cambridge, MA 02139

Abstract

We informally discuss "knowledge complexity™ a measure for the amount of knowledge that can be feasibly
extracted from a communication. Qur measurc provides an answer to the following two questions:

1) How much knowledge should be communicated for proving a theorem?

2) How to prove correciness of cryptographic protocols?

We sympathize with the readers who are distressed by the level of informality of this short abstract. Most of the
material is contained in the reference [GMR). We encourage the readers to consult it for precise definitions.

353

354

SESSION 9

1. Knowledge Complexity
Everyone would agree that communication is the tool for transfering or exchanging knowledge. This, however, docs
not answer basic questions like

Which communications convey knowledge?

How much knowledge is contained in a communication?

knowledge Complexity, a notion introduced in [GMR], provides an answer to these questions in a framework where
computation is bounded. In sections 2 and 3 we indicate how these ideas can be applied to two contexts in which
knowledge is particularly relevani: theorem proving and cryptographic protocols.

1.1 The Basic Scenario

In our framework communications that convey knowledge are thosc transmitting the result of an infeasible com-
putation, thercforc a computation that we cannot perform by oursclves. Before proceding any further, we have to set-
tle the question of which computations should be considered infeasible. Theoretical computer science regards as
"feasible” those computations that can be performed in polynomial time (i.e. in time polynomial in the length of the
input) and as "infeasible” those requiring, say, exponential time. @

Recently, coin tossing has been proved useful for efficient computation (sce for example the probabilistic primal-
ity tests of Solovay and Strassen [SS], Rabin [R] and Goldwasser and Killian [GK]). Since the ability of flipping a coin
is common to anyone, we will consider infeasible those computations that cannot be performed in probabilistic poly-
nomial time (i.c. in polynomial time and making random choices as well).

Our scenario consists of two "agents” (read Turing machines) 4and B and an input x known to both of them.
We think of 4 as the “"communicator” and of B as the “receiver”. They "talk”™ back and forth about x. (In a more
restricted scenario, as in the case of radio broadcasting, 4 will be the only one to speak and B will only listen.) As we
are interested in quantifying how much knowledge can be “efficiently extracted” from a communication, B is bound
to compute in probabilistic polynomial time, while A has no restrictions on its computational power. In many relevant
cases, however, 4 may also be bound to feasible computations, but happens to possess more “insights” about x. One
such case is discussed in the next sub-section and more naturat examples arise in the context of section 3.

Our scenario is deceivingly resemblant the one of Information Theory. There A is the only witness of some
event, the occurrence of which it communicates (o B. More precisely, B knows the probability of the possible events,

(1) It is apparent that the computation time necessary for solving a problem depends on the size of the
problem, i.c. the number of bits necessary for describing it For instance, multiplying two integers will re-
quire more time for longer integers than for shorter ones. The running time is thus considered as a function
of the inrul length, usually denoted by k. A problem is solvable in polynomial time if there is a constant ¢
and an aigorithm (Turing machine) that solves of its instances of siz¢c & within time (numbcer of steps) kIt
may scem arbitrary to cquate "feasibility™ with polynomial tme, a5 k /w_cds 10 be pretty big before kY (that
is a particular polynomial running time) becomes foss than, say. & s Ok (ihat s a non-polynomial running
time). However. there are many reasons justifying the choice of polynomial time as "cilicient tine”. For ex-
ample, polynomial time is a robust notion in that it appears to be independent of the particular computa-
tional model (computer) used. Another advantage is that the composition of two feasible computations is it-
self a feasible computation. This is so as "polynomial of polynomial is polynomial”, very much the same
way as the finite union of finite scts is finite.

KNOWLEDGE AND EFFICIENT COMPUTATION

but is totally unawarc of which specific event actually occurred.

One fundamental difference between other models and ours is that x is a common input. Another difference is
that B is only capable of feasible computations and cannot, for instance, derive all the logical consequences of the
information in its hand. @

Let, for instance, B be a scientist (bound, as a human, to feasible computation only). Let the common input x
be Nature (that indced is under everybody’s eycs) and 4 be an “angel” willing to reveal some of nature’s best kept
sccrets. ‘The angel and the scientist will discuss about x. It is in this scenario that we address the question of how
much knowledge has the scientist gained by this conversation. Given what we said above, answering is casy in at least
two cascs. If A sends to B n random bits, for example, though this will be n bits of information, it would be no
knowledge because B could easily generate random bits by himself. Similarly, the result of any probabilistic
polynomial-time computation will not contain any knowledge.

We do not present here a formal and general upper bound (cxpressed in bits) for the amount of knowledge that
can be communicated to a polynomial time recciver. A precise formulation of the new measure relics on many techni-
cal details and is unsuitable for such a short abstract. We will, however, present the motivation behind it and mention
the notions neccssary to its formalization. This is best done by discussing an example.

1.2 An Example

Assume that a crime x has happened, that B is a reporter and A4 a police officer. 4 understands the rights of
the press but, for obvious reasons, also tries not to release too much knowledge about x. Should reporter B call the
police officer 4 to know more about x? It depends. If he has probability essentially equal to 1 of efficiently generat-
ing, alonc at home, in front of his typewriter, the "same” conversations (about this specific crime x) that he might
have with 4, he should not bother to call: A will give him zero knowledge about x. Assume, instcad, that B may,
efficiently and by himsclf (i.c. without A4’s intervention), gencrate four conversations about x. one of which (but is
not clear which onc) is guarantced to be the one actually occuring if talking to A. In this case, the knowledge that B
may receive from A4 about x cannot exceed two bits. Morcover, this is an absolute upper bound for any kind of
knowledge B may receive. Possibly, the knowledge B is interested in is cven less. Still, it may pay off to call, If,
finally, B has only chance 1 in 2100 of generating the possible conversations about x with the police officer by an effi-
cicnt procedure, then the officer is a real gossiper and B should rush to the telephone!

L.ct us stress once more that it is crucial that B should be able to "simulate” A cfficiently. The ability of gen-
crating the conversations in question with probability 1 but in exponcntial time would be totally uscless. Esscntially,
because B would not live long enough to sec the result of his computations! It is the probability of quickly imitating
A that essentially measures the "amount of knowledge that 4 may give to our specific reporter 8°,

Much more important, however, is the notion of an agent (police officer) that only gives away ar miost a certain
amount of knowledge. no matier with whom it talks. An honest reporter will not try to get out of A knowledge that is

(2) This will in geacral make the analysis particularly delicate as polynomial time is a notion easy to define
but difficult-to usc. In fact though progress has been made towards estimating the computational difficulty

of probicms still very fundamental questions remain open.

355

356

SESSION 9

not supposed to reccive. However, nobody guarantees the officer that he is talking to ar honest reporter. Indeed a
dishonest and news-hungry B', though still bound to feasible computation, may be able to find out more about x,
Despite this capability, if the officer is so skillful to be onc who communicates, say, at most 2 bits of knowledge, no
matter how tricky questions 8' asks and how much he cheats, he will not get out of him more than two bits aboug x.

Proving that some communicator A4, that is programmed to answer certain type of questions, releases at most
two bits of knowledge is ccrtainly more difficult. Essentially because a proof must consider all possible polynomial-
time strategics for 4°. Still, as we point out is section 2 and 3, such proofs have been found in some cascs. First, we

nced to refine the concepts of the previous exampie.

1.3 Our Example Revisited

In the example above, we talked about the probability with which B, by himself and cfficiently, may generate
the discussion that it and 4 may have on input x. However, everyone knows that some randomness is present in
every conversation. Let our communicator be the most predictable police officer you can imagine. Still, for no crime
the sct of his relative possible comments will consist of a single element. Rather, to any possible crime will be associ-
ated an ensemble of possible trivialities. Guessing exactly which comment will be actually said will be almost impossi-
ble, but nevertheless inessential as these -comments are all "cquivalent”. Insisting in predicting individual strings
would mislead us toward a wrong definition of knowledge, one in which essentially all communicators would appear
relcasing enormous amounts of knowledge. Consider a communicator 7 that, no matter what the input is, always
transmits a randomly chosen 100-bit string. It will be pretty hard to correctly guess which string it will send us, but it
will be extremely easy to dispose of 7" and replace it by flipping a 100-bit string oursclves whenever we want its opin-
jon, This leads to the following point of view.

The probabilistic programs (agents) A and B, together with the input x specify a probubility distribution ABy,
namely the sct of all possible conversations of 4 and B about x. These probability distributions may be extremely
complex. What is relevant to our analysis is the computational difficulty of sampling AB,, i.c. picking clements with
exactly the probabilitics they are assigned in 48, Let us revise in this light some of the cases discussed in our exam-
ple of section 1.3.

Reaching a morc appropriate level of generality, we will say that 4 gives zero knowledge to B if, on input x, B
will be able, by himsclf, to sample 4B, in polynomial time. That is, if B can efficiently sclect conversations ¢ with
cxactly the probability distribution with which 4 and B wlking together would select it.

Let us consider the next case. One way in which A4 gives B at most 2 bits of knowledge is the following: on
input x, B can efficiently sclect 4 conversations, one of which will be sclected exactly according to A8, though B
doces not necessarily know which one.

L4 A Pinch of Operationism (or: One More Visit To Our Example)

To reach a powerful fevel of generality, we have to further refine the notion of "efficient samplability” of AB,
given in the previous sub-scction. There we insisted that £, alone and rcasonably quickly, is able to sclect elements
with exacily the same probability they are assigned in 4B, Why do we need these probabilities to be exac? There is
no compelling reason. For example, let) be the uniform probability distribution over the set of the 1000-bit strings

KNOWLEDGE AND EFFICIENT COMPUTATION

and let the distribution D3 assign equal probability to all 1000-bit string cxcept the string 000...0 (one thousand times)
which will be assigned probability 0. Then it will be humanly impossible 1o distinguish D) from D; by randomly
drawing elements from them. Only afier the Universe has ended will we find out that the string 000...0 docs not come
up with the same frequency when sampling D, as when sampling D). For all practical considerations, Dy is cqual to
Ds.

Above we only discussed a particular way in which two probability distributions appear equal: the two probabil-
ity distributions assign equal probability to equal strings except for a set whose total probability is negligibly small.
However, as the following example suggests, this may not be the only way in which two probability distributions may
appear cqual. Consider a particular Turing machine A7. let S{‘ be the set of the &-bit inputs on which M halts after
2'/" steps and Sf the set of k-bit inputs on which M does not halt. Now choose a particular k with the constraints
that it is bigger than a million and that SX and 8% contain, say, more than 219 elements. Then, let us consider the
uniform probability distribution for $% and for S§ . This time the two distributions cannot be close as they are
defined on totally disjoint sets. Nevertheless, it is conceivable that, by cleverly choosing M, the two distributions may
appear equal from all practical points of view!}

The notion that naturally includes all “plausible™ ways of two distributions appearing cqual {including of course
the oncs suggested above) is that of Polynomial Time Undistinguishable Probability Distributions. The precise defini-
tion is given in [GMR]. Here we only intend to outline the point of view behind the definition.

In essence, two objects X and Y can be called distinct only if there is an explicit procedure that tells them apart.
At a sccond glance, what we really necd is a procedure that is reasonably fast. If all polynomial time procedures fail to
distinguish X from Y, then X and Y are cither cqual or distinguishable only by "angels”. But, for us humans, it is an
act of intcllcctual honesty to consider them equal,

We should rivisit once more our example armed with this new level of gencrality. In essence, the reporter
receives O knowledge from the police officer if can efficiently generate a set of conversations that cannot be feasibly
distinguished from the text of the conversations that he might have with the officer. In this case, experiencing the
“real” conversations with the officer is useless as no other human (somebody who is bound to polynomial time) can
find any difference with the fake oncs. Whatever the reporter may find in the real conversations or UL "whatever”
he can succeed doing with the real conversations, he may also find or succeed in doing with the fake oncs.

Onc may ask at this point why further generalizations are not necessary. The best reassurance that the right for-
malization has been achieved can be derived from the successful application of these concepts to other ficlds of
intcrest. Indeed, knowledge complexity enabled us to study some fundamental questions relative to the proving pro-
cess (see next section) and to prove the correctness of cryptographic protocols, an extremely puzzling and difficult

task.

357

358

SESSION 9

2. The Knowledge Complexity of Theorem Proving Procedures

How much knowledge should be communicated for proving a theorem T?
Certainly cnough to verify that T is true. Usually, much more. For cxample, to prove that a certain a is a quadratic
residue mod m (i.e.-a square mod m), it is sufficient to communicate an x such that a=x%mod m. This communica-
tion, however, contains more knowledge than just the fact that g is a quadratic residue. It communicates a square
root of @. We intend to measure the additional knowledge that a prover gives to a verifier during a proof, and inves-
tigate whether this additional knowledge may be esscntially 0.

To be able to contain the amount of knowledge released during a proof we nced to consider a natural generali-
zation of cfficient thcorem-proving procedures.

2.1 Interactive Proof Systems
Much effort has been previously devoted to make precise the notion of an cfficient theorem-proving procedure.
NP constitutes a very successful formalization of this notion. Loosely speaking, a theorem is in provable in NP if its
proof is easy to verify once it has heen found. Let us recall Cook’s [C} (and independently Levin's [L]) influential
definition of NP in this light.
The NP proof-system consists of two coinmunicating Turing machines 4 and B: respectively, the prover and the
verifier. The prover is exponential-time, the verifier is polynomial-time. Both 4 and B arc deterministic, read a
common input and interact in a very elementary way. On input a string x, belonging to an NP language L, 4
computcs a string y (whose length is bounded by a polynomial in the length of x) and writes y on a special tape
that B can rcad. B then checks that f; (y)=x (where [is a polynomial-time computable function relative to
the language L) and, if so, halts and accepts. This process is illustrated in figure 1.

e
A AN
A B
N
[work TaPE | | | | WORK TaPE |

Fig. 1: The NP proof-system'
‘The notion of a proof, like the notion of a computation, is an intuitive onc. Intuition, however, may and must be

formalized. Computability by (deterministic) Turing machines is an clegant cxample of formalization of the intuitive
concept of a computation. Fach formalization, however, cannot catirely capture our original and intuitive notions,

(*) (By - - - =2 we denote a read/write head, by — — —R —=> a rcad-only head and by ~ — - W ->
a wrilc-only head)

KNOWLEDGE AND EFFICIENT COMPUTATION 359

exactly becausc they arc intitive. Following our intuition, probabilistic algorithms [R][SS] [GK] are means of comput-
ing, though they are not in the previous formal model. Similarly, NP is an elegant formalization of the intuitive notion
of a thcorem-proving procedure. However, NP only captures a particular way of communicating a proof. It deals with
those proofs that can be "written down in a book"”.

We want to introduce interactive proof-systems to capture a more general way of communicating a proof, We
deal with those proofs that can be "explained in class”. Informally, in a classroom, the lecturer can take full advantage
of the possibility of interacting with the “recipicats” of the proof. They may ask questions at crucial points of the
argument and receive answers. This makes life much casier. Writing down a proof that can be checked by everybody
without interaction is a much harder task. In some sense, because onc has to answer in advance all possible questions.

Before arguing that our interactive proof systems capture the intuitive notion of a proof we need to ask: what is
intuitively required from a theorem-proving procedure? First, that it is possible to "prove” a truc thcorem. Second,
that it is impossible to "prove” a false thcorem. Third, that communicating a proof should be efficient in the following
sense. It docs not matter how long must the prover compute during the proving process, but it is cssential that the
computation required from the verifier is easy.

‘The theorem-proving procedures we consider are
1) efficient: the "recipicnt” of a proof must be quickly convinced of its correctness.
2) probabilistic: on input a false n-bit long statement, the recipient may erroncously be convinced that it is correct

with very small probability, say -2—1’-‘— On input & truc n-bit long statement, the recipient should rightfully be con-

vinced of its correctness with very high probability, say 1 ~ _21"-

3) interactive: to verify the correctness of a statement, the "recipient” of the proof may actively ask questions and
reccive answers from the “prover”.
Rather than giving a formal definition of our interactive proof-systems lct us present an cxample.

Example 1: Let Z,,', denote the set of integers between 1 and m that arc relatively prime with m. An clement
aEZ,,'l is a quadratic residue mod n if a=x2 mod m for some x€Zy, clse it is a quadratic nonresidue. Now let
L ={(m.x)|x€Z,:, is a quadratic nonresiduc }. Notice that L €NP: a prover needs only to compute the factorization
of m and scnd it to the verifier without any further interaction. But looking ahcad to zero knowledge proof-systems,
we will consider a more interesting interactive proof-system for L. The verifier B begins by choosing # = {m| ran-
dom members of Zpy, {r1.73mry }. For cach i, 1<i <n, he flips a coin. and if it comes up heads he forms ¢ =r,-2 mod

computing power, finds which of the 1; are quadratic residucs, and uscs this information to il 8 the results of his last
n coin tosses. I this information is correct, B accepts.

Why docs this work? If (m .x)E L., then 4 correctly predicts all last # coin tosses of B who will definitely aceept.
If n.x) not in 1., then the {4} arc just random quadratic residucs, and the prover will respond correctly in the last
part of the computation with probability 127, In fact, for cach of the last n coin tosses of B, A has probability

exactly 172 of guessing it correctly,

360

SESSION 9

We may vicw our interactive proof-systems as a special service offered by ATT, "Dial 144 for mathematical theorem
proving". Some uscr may want to know whether x belongs to language L and dials 144. Immediatly he is connected
with a Super Expert able to solve all problems. The trouble is that the user does not trust him. He may not be as
expert as he claims or he may be a cheater ready to tell the uscr falsc information. ‘Therefore the user will not take his
word about what is true. He trusts however the coin he flips and, if at the end of the conversation he has been con-
vinced, than he belicves that x €L. In fact he knows that if this was not the case, the probability of being convinced
(taken over his own coin tosses) was exponcntially vanishing.

We now address our next question.

2.2 The Knowledge Complexity of a Language

To prove that a formula is satisfiable it suffices to exhibit a satisfying assignment. This proof, however, appears
to contain more knowledge than the single bit "satisfiable/non-satisfiable” ! Using knowledge complexity, we give a
measure for the amount of additional knowledge that must be transfercd during a theorem-proving procedure and
show that, in some cascs it may essentially be 0.

Let us view the case in which the additional knowledge is 0 in our ATT scenario. ATT charges a dollar for each
call to 144. During a call the expert can be asked about only one theorem. Assume that the question is whether x€L,
i.c. whether x belongs to the set of true theorems. (Here we will assume that x docs belong to L) It is the purpose of
the caller checking the validity of the reccived proof and, it must be admitted, getting at least two theorems at the
price of one. AT docs not know whether the caller is a cheatcr and wants to insure that he only gets that x€L is
true theorem. Can ATT succeed in this? Yes if membership in L can be shown relcasing 0 additional knowledge.
Rather than dealing with the general notion, we confine oursclves to discuss a resiricted scenario.

The particular prover-recipient pair of example 1 posscsses the following intercsting property. When x€L, A
can show to B that indced x belongs to L and nothing else. What is a way of expressing this? When x €L, what B
possesses at the end of the proof. First, knowledge of the fact that indeed x is in £., which was the main goal of the
proof anyway. Sccond the actual fext of the proof, that is an clement e randomly sclected from AB,. However, in
this cxample; once B has been convinced that x €1, e becomes totally uscless to it. In fact B can generate such e's
alone and with the right probability distribution; he can efficicntly sample A48, without A4's help. B may perfectly
imitate 4 by looking at his own coin tosses. When B sends £; computed by squaring r;, it will imitate 4 by answering
"quadratic residuc”. When B sends 4 computed by squaring r; and then multiplying it by x, it will imitate 4 by
answering "quadratic nonresiduc”. In other words, once B sces that A4 is able to predict its sceret coin tosses, which
"prooves” that x is a non-square mod a, it can predict its own coin tosses by himself as they arc not secret to him}

Notice however, that, in example 1, 4 is not proving quadratic non-residuosity without relcasing 0 additional
knowledge. Rather, A is releasing 0 additional knowledge to the specific B of example 1. In fact, some other B8 that
interacts with A4 may decide to create the ;s in a different way. For instance, such a B may send the sequence of
integers 4; =i and therefore receive an answer about their quadratic residuosity that it may not be able to computc by
jtself" if deciding quadratic residuosity is not in probabilistic polynomial tme.

However, a (more complext) interactive proof system for proving quadratic non-residuosity that releases 0
knowledge (o anybody!) can be found in [GMR]. Recently we found a similar proof systemn for proving quadratic

KNOWLEDGE AND EFFICIENT COMPUTATION 361

residuosity as well. This is surprising as no efficient algorithm for deciding quadratic residuosity mod m is known
when m’s factorization is not given. Moreover, all known NP proofs for this problem exhibit the prime factorization
of m. This indicates that adding interaction to the proving process, may decrcase the amount of knowledge that must
be communicated in order to prove a theorem,

Zero-knowledge proof systems are a surprise and we believe that they cannot prove membership in every
language. We actually intend to classify languages according to the amount of additional knowledge that must be
released for proving membership in them.

We belicve that knowledge complexity is onc of the fundamental parameters of a language or, equivalendy, of a
theorem-proving procedure. Theorem-proving procedures are in fact intended to communicate knowledge and it is
very natural to classify them according to the amount of knowledge they must communicate.

3. Applications of Knowledge Complexity to Cryptographic Protocols

In traditional computational complexity or communication complexity, the goal is to communicate as much
knowledge as possible as efficiently as possible. Since all participants are considered good friends, no one cares if more
knowledge than nccessary is communicated. The situation with respect to cryptographic protocols is very different. In
this case there is generally no problem at all communicating the knowledge efficiently, but the whole problem is mak-
ing surc not foo much knowledge has been communicated.

Model theorctic knowledge has been used to analyze protocols. For example, in [HR] it has been used to prove
Rabin’s "Oblivious Transfer" correct in some sctting. However, as pointed out in [FMR], Rabin’s oblivious transfer
still lacks a proof of correctness in a complexity theoretic framework.

We believe that knowledge complexity provides the right framework to discuss the correctness of crytographic
protocols. For example, applying these idcas [FMR] modificd Rabin’s oblivious transfer so that it can be proved
correct.

Knowledge complexity helps in proving or disproving the correctness of cryptographic protocols as these are
based on the sccrecy of some private information and should preserve this seerecy. ‘The privacy of some information is
what gives us an advantage over our adversarics. Let A(lice) possess the prime factorization of an intcger n (say
n=py-py), while B(ob) only knows n. During a protocol with B, A must protect the privacy of her information.
Assume that A can perform cach step of the protocol without having even to look at the value of pj and py. Then it
is casy to show that the protocol did not compromise the privacy of a’s factorization. 1t is also casy 10 sce, however,
that the protocol could not have accomplished any interesting task. In fact 4 has not made usc of her "advantage”!
The protocol may accomplish a non-trivial task if, in at lcast one stcp of it. 4 performs a computation ¢ that depends
on p; and pj. 'This raiscs the question:

Will o(p1.p2) betray to much information about py and p2?

Classical information theory docs not provide an answer (o this question. Knowledge complexity can. In particular,

1) We can quantify the amount of knowledge about pj and p; that ¢ conveys and

2) We can design protocols so to minimize this amount of knowledge.

362

SESSION 9

We usc this to give an upper bound on the number of times a single protocol or a combination of protocols can
be played, using a common sccret key, without giving away too much information about the secret key. In addition,
trying to measure the amount of knowledge revealed during the exccution of a protocol about the sccret, may pin
point weaknesses in the design of the protocol.

A most important application of these ideas is that it allows us to prove correctness of protocols in a modular
way. Complex protocols are usually composed of sub-protocols. For instance, many protocols use a sub-protocal for
"coin tossing over a telephone” (Blum [Bl1]). However, it is not clear how to usc a “normal” definition of correctness
of "coin tossing" to prove the correctness of the main protocol. In general, it appears that much stronger definitions
for these sub-protocols are needed in order to fit them modularly and cleanly inside larger protocols. Full details will
be given in the forthcoming paper on the applications of Knowledge Complexity to the theory of cryptographical pro-
tocol.

Acknowledegement
Many thanks to Oded Goldreich for his many helpful suggestions.

References

[B11} M. Blum, Coin flipping by telephone, IEEE COMPCON 1982.

[C] S.Cook, The Complexity of Theorem-Proving Procedures”, Proc. of 3rd STOC, 1971.

[FMRIM. Fischer, S. Micali and C. Rackoff, 4 Secure Protocol for the Oblivious Transfer, .ccture Eurocrypt 1984,
{GM]S. Goldwasser, and S. Micali, Probabilistic Encryption, JCSS Vol. 28, No. 2, April 1984.

{GM]S. Goldwasser, and S. Mlcali ,Proofs with Untrusted Oracles, Unpublished Manuscript 1983.

[GGMIO. Goldreich, S. Goldwasser, and S. Micali, How to Construct Random Function, 25th FOCS, 1984.

[GMRI]S. Goldwasser, S. Micali and C. Rackoff, The Knowledge Complexity of Interactive Proof-Systems 17th Annual
ACM Symp. on Theory of Computing, pp 291-304. Better version to appear on the Journal of ACM.

[GK] S. Goldwasser and J. Killian, 4 provably Correct and Provably Fast Primality Test, to appear 18th STOC
[HR] J. Halpern and M.O. Rabin, 4 Logic to reason about likehood, Proc. of 15th STOC, 1983.

(L1 L.AlLevin, Universal Sequential Search Problems, Probl. Inform. Transm. 9/3 (1973), pp. 265-266.

[R] M. Rabin,

[SS] R. Solovay and V. Strassen 4 fast Monte-Carlo test for primality, SIAM 1. on Comp., 1977, pp. 84-85.

