
Knowledge and Efficient Computation

by

Silvio Micali

Compute r Science Depar tment

M I T

545 Technology Square

Cambridge, MA 02139

Abstract

We informally discuss "knowledge complexity": a measure for the amount of knowledge that can be feasibly

extracted from a communication. Our measure provides an answer to the following two questions:

1) How much knowledge should be communicated for proving a theorem?

2) How to prove correctness of cryptographic protocols?

We sympathize with the readers who are distressed by the level of informality of this short abstract. Most of the

material is contained in the reference [GMR]. We encourage the readers to consult it for precise definitions.

353

354 SESSION 9

1. Knowledge Complexity
Everyone would agree that communication is the tool for transfering or exchanging knowledge. This, however, does

not answer basic questions like

Which communications convey knowledge?

How much knowledge is contained in a communication?

knowledge Complexity, a notion introduced in [GMR], provides an answer to these questions in a framework where

computation is bounded. In sections 2 and 3 we indicate how these ideas can be applied to two contexts in which

knowledge is particularly relevant: theorem proving and cryptographic protocols.

1.1 T h e Bas i c Scenario
In our framework communications that convey knowledge are those transmitting the result of an infeasible com-

putation, therefore a computation that we cannot perform by ourselves. Before proccding any further, we have to set-

tie the question of which computfitions should be considered infeasible. "lheorctical computer science regards as

"feasible" those computations that can be performed in polynomial time (i.e. in time polynomial in the length "of the

input) and as "infeasible" those requiring, say, exponential time. O)

Recently. coin tossing has been proved useful for efficient computation (see for example the probabilistic primal-

ity tests of Solovay and Strassen [SS], Rabin [R] and Goldwasser and Killian [GK]). Since the ability of flipping a coin

is common to anyone, we will consider infeasible those computations that cannot be performed in probabilistic poly-

nomial time (i.e. in polynomial time and making random choices as welt).

Our scenario consists of two "agents" (read Turing machines) A and B and an input x known to both of them.

We think of A as the "communicator" and of B as the "receiver". They "talk" back and forth about x. (In a more

restricted scenario, as in the case of radio broadcasting, A will be the only one to speak and B will only listen.) As we

are interested in quantifying how much knowledge can be "efficiently extracted" from a communication, B is bound

to compute in probabilistic polynomial time, while A has no restrictions on its computational power. In many relevant

cases, however, A may a!so be bound to feasible computations, but happens to possess more "insights" about x. One

such case is discussed in the next sub-section and more natural examples arise in the context of section 3.

Our scenario is deceivingly resemblant the one of Information Theory. There A is the only witness of some

event, the occurrence of which it communicates to B. More precisely, B knows the probability of the possible events,

(1) It is appalcnt that the computation time necessary for solving a problcm depends on the size of the
problem, lie. the nunll)cr of bits necessary lbr dcscl-ibing it. For instance, mtdtiplyin~ two integers will re-
quire more time for longer integers than lbr shorter ones. The running time is thus considered as a function
of the input length, usually de~otcd by k. A problem is solwtble in polynomial time if thcte is a constant c
and an algorilhm ('l'uring machine) that solves of its instances of siLc k w~thm " time (l~tmlbcr, of, steps/. "~0 kc" It
may seem arbitrary to ctitmte "l~asibilitv" with polynomial time, as, k,,n¢,cds to bc prctt) bite bcfl ,e k (that
is a particular polynomial running timei becomes less than, say. k " ' (that is a not~- ~t~lynomial rn,ning
time'). I Iowevcr. there arc many rca~ms jus!if)ing the clloice of polynomial time as "cllicicnt time". Ft)r ex-
ample, polynomial lime is a robust notion m that it appears to he independent of the partictd,ff computa-
tional model (computer) used. Another advantage is that the composition of two t~asible cornptJtalions is it-
sell" a feasible computation. This is so as "polynomial of polynomial is I)olynonfial", very mt~ch the same
way as the linite union of linite sets is linite.

KNOWLEDGE AND EFFICIENT COMPUTATION 355

but is totally unaware of which specific event actually occurred.

One fundamental difference between other models and ours is that x is a common input. Another difference is

that B is only capable of feasible computations and cannot., fur instance, derive all the logical consequences of the
information in its hand. (2)

I.c~ for instance, B be a scientist (bound, as a human, to feasible computation only). Let the common input x

be Nature (that indccd is under everybody's eyes) and A be an "angel" willing to reveal some of nature's best kept

secrets. The angel and the scientist will discuss about x. It is in this scenario that we address the question of how

much knowledge has the scientist gained by this conversation. Given what we said above, answering is easy in at least

two cases. If A sends to B n random bits, for example, though this will be n bits of information, it would be no

knowledge because B could easily generate random bits by himself. Similarly, the result of any probabilistic

polynomial-time computation will not contain any knowledge.

We do not present here a formal and general upper bound (expressed in bits) for the amount of knowledge that

can be communicated to a polynomial time receiver. A precise formulation of the new measure relics on many techni-

cal details and is unsuitable for such a short abstract. We will, however, present the motivation behind it and mention

the notions necessary to its formalization. This is best done by discussing an example.

1.2 An Example
Assume that a crime x has happened, that B is a reporter and A a police officer. A understands the rights of

the press but• for obvious reasons, also tries not to release too much knowledge about x. Should reporter B call the

police officer A to know more about x? It depends. If he has probability essentially equal to 1 of efficiendy generat-

ing, alone at home, in front of his typewriter, the "same" conversations (about this ~ecifie crime x) that he might

have with A, he should not bother to call: A will give him zero knowledge about x . Assume, instead, that B may,

efficiendy and by himself (i.e. without A's intervention), generate four conversations about x. one of which (but is

not clear which one) is guaranteed to be the one actually occuring if talking to A. In this case, file knowledge that B

may receive from A about x cannot exceed two bits. Moreover, this is an absolute upper bound for any kind of

knowledge B may receive. Possibly, the knowledge B is interested in is even less. Still, it may pay off to call. If,

finally, B has on!y chance 1 in 2100 of generating the possible conversations about x with the police officer by an effi-

cient procedure, then the officer is a real gossiper and B should rush to the telephone!

Let us stress once more that it is crucial that B should be able to "simulate" ,4 efficiently. The ability of gen-

erating the conve~ations ill question ~'ith probability 1 but in exponential time would be tot.ally useless. F~entially,

because B would not live long enough to see the result of his compu~tions! It is the probability of quickly imitating

A that essentially measures the "amount of knowledge that A may give to our specific reporter B".

Much more important, however, is the notion of an agent (police officer) that only gives away at most a certain

amount of knowledge, no mailer with whwn it talks, An honest reporter will not try to get out of A knowledge [hat is

(2) This will in general make the analysis particularly delicate as polynomial time is a notion easy to define
btlt diliicult Io use. In Ihct dlough progress has been made towards estimating tile comptltatiollal difliculty
of problems still very fundamental quegdons remain open.

356 SESSION 9

not supposed to receive. However, nobody guarantees the officer that he is talking to an honest reporter. Indeed a

dishonest and news-hungry B', though still bound to feasible compuu~tion, may be able to find out more about x.

Despite this capability, if the officer is so skillful to be one who commtmicates, say, at most 2 bits of knowledge, no

matter how tricky questions B' asks and how much he cheats, he will not get out of him more than two bits about x.

Proving that some communicator A, that is programmed to answer certain type of questions, releases at most

two bits of knowledge is certainly more difficult. Essentially because a proof must consider all possible polynomial-

time strategies for B'. Still, as we point out is section 2 and 3, such proofs have been found in some cases. First, we

need to refine the concepts of the previous example.

1.3 Our Example Revisited

In the example above, we talked about the probability with which B, by himself and efficiently, may generate

the discussion that it and ,4 may have on input x. However. everyone knows that some randomness is present in

every conversation. Let our communicator be the most predictable police officer you can imagine. Still. for no crime

the set of his relative possible comments will consist of a single element. Rather. to any possible crime will be associ-

ated an ensemble of possible trivialities. Guessing exactly which comment will be actually said will be almost impossi-

ble. but nevertheless inessential as these comments are all "equivalent". Insisting in predicting individual strings

would mislead us toward a wrong definition of knowledge, one in which essentially all communicators wotdd appear

releasing enormous amounts of knowledge. Consider a communicator T that, no matter what the input is, always

transmits a randomly chosen 100-bit string. It will be pretty hard to correctly guess which string it will send us, but it

will be extremely easy to dispose of T and replace it by flipping a 100-bit string ourselves whenever we want its opin-

ion. This leads to the following point of view.

The probabilistic programs (agents) A and B, together with the input x specify a proba~,ility distribulion ABx,

namely the set of all possible conversations of A and B about x. These probability distributions may be extremely

complex. What is relevant to our analysis is the computational difficulty of samplb~g ABe, i.e. picking elements with

exactly the probabilities they are assigned in AB x. l.et us revise in .this light some of the cases discussed in our exam-
ple of section 1.3.

Reaching a more appropriate level of generality, we will say that A gives zero knowledge to B if, on input x, B

will be able, by himself, to sample AB x in polynomial time. That is, if B can efficientl£ select conversations c with

exactly the probability distribution with which A and B talking together would select it.

l.et us consider the next case. One way in which A gives B at most 2 bits of knowledge is the following: on

input x, B can efficiently select 4 conversations, one of which will be selected exactly according to ABx, though B
does not necessarily know which one.

i .4 A Pinch of Operaf ionism (or: O n e More Visit To Our Example)

To reach a powerful level of generality, we have to fiu'ther refine tile notion of "efficiei~t samplability" of ,4B x

given in the previous sub-section. There we insisted that B. alone and reasonably quickly, is able to select elements

with exactly the same probability they arc assigned in ,,tll x. Why do we need these probabili0es to be exact? There is

no compelling reason. For example, let D r bc tile unifi}~m probability distribution over the set of the 1000-bit strings

KNOWLEDGE AND EFFICIENT COMPUTATION 357

and let the distribution D2 assign equal probability to all 1000-bit string except the string 000...0 (one thousand times)

which will be assigned probability 0. Then it will be humanly impossible to distinguish Di from D 2 by randomly

drawing elements from them. Only after the Universe has ended will we find out that the string 000...0 does not come

up with the same frequency when sampling -/)2 as when sampling Di. For all practical considerations. D 1 i_s equal to
D2.

Above we only discussed a particular way in which two probability distributions appear equal: the two probabil-

ity distributions assign equal probability to equal strings except for a set whose total probability is negligibly small.

However. as the following example suggests, this may not be the only way in which two probability distributions may

appear equal. Consider a particular Turing machine M. let S~ be the set of the k-bit inputs on which M halts after

2 ¢'~ steps and S~ the set of k-bit inputs on which M does not halt. Now choose a particular k with the constraints

that it is bigger than a million and that S~ and S~ contain, say. more than 2 i°° elements. Then. let us consider the

uniform probability distribution for S{ and for S~. This time the two distributions cannot be close as they are

defined on totally disjoint sets. Nevertheless, it is conceivable that, by cleverly choosing M, the two distributions may
appear equal from all practical points of viewl

The notion that naturally includes all "plausible" ways of two distributions appearing equal (including of course

the ones suggested above) is that of Pob,aomial Time Undistinguishable I¥obabilily Distributions. The precise defini-

tion is given in [GMR]. Here we only intend to outline the point of view behind the definition.

In essence, two objects X and Y can be called distinct only if there is an explicit procedure that tells them apart.

At a second glance, what we really need is a procedure that is reasonably fast. If al_J polynomial time procedures fail to

distinguish X from Y. then X and Y are either equal or distinguishable only by "angels". But. for us humans, it is an

act of intellectual honesty to consider them equal.

We should rivisit once more our example armed with this new level of generality. In essence, the reporter

receives 0 knowledge from the police officer if can efficiently generate a set of conversations that cannot be feasibly

distinguished from the text of the conversations that he might have with the officer. In this case, experiencing the

"real" conversations with the officer is useless as no other human (somebody who is bound to polynomial time) can

find any difference with the fake ones. Whatever the reporter may find in the real conversations or UL "whatever"

he can succeed doing with the real conversations, he may also find or succeed in doing with the fake ones.

One may ask at this point why further generalizations are not necessary. The best reassurance that the right for-

malization has been achieved can be derived from the successful application of these concepts to other fields of

interest. Indeed, knowledge complexity enabled us to study some fundamental questions relative to the proving pro-

cess (see next section) and to prove the correctness of cryptographic protocols, an extremely puzzling and difficult

task.

358 SESSION 9

2. The Knowledge Complexity of Theorem Proving Procedures
How much knowledge should be communicatedJbr proving a theorem T?

Certainly enough to verify that T is true..Usually, much more. For cxample, to prove that a certain a is a quadratic

residue rood m (i.e.-a square mod m), it is sufficient to communicate an x such that a=_x 2 rood m. This communica-

tion. however, contains more knowledge than just the fact that a is a quadratic residue. It communicates a squar__._~

root of a. We intend to measure the additional knowledge that a prover gives to a verifier during a proof, and inves-

tigate whether this additional knowledge may be essentially 0.

To be able to contain the amount of knowledge released during a proof we need to consider a natural generali-

zation of efficient theorem-proving procedures.

2.1 Interactive Proof Systems
Much effort has been previously devoted to make precise the notion of an efficient theorem-proving procedure.

NP constitutes a very successful formalization of this notion. Loosely speaking, a theorem is in provable in NP if its

proof is easy to verify once it has been found. Let us recall Cook's [C! (and independently Levin's [L]) influential

definition of NP in this light.

The NP proof-system consists of two communicating Turing machines A and B: respectively, the prover and the

verifier. The prover is exponential-time, the verifier is polynomial-time. Both A and B are deterministic, read a

common input and interact in a very elementary way. On input a string x, belonging to an NP language L, A

computes a string y (whose length is bounded by a polynomial in the length of x) and writes y on a special tape

that B can read. B then checks that f z (y) = x (where fL is a polynomial-time computable function relative to

the language L) and, if so. halts and accepts. This process is illustrated in figure 1.

INPUT]
- - ~ jR ,'',a" "~K",,R~

\w,,x . . : / I I

I I I I I I

Fig~ 1: The NP prooFsys~m (')

The notion of a proof, like the notion of a computation, is an intuitive one. Intuition, however, may and must be

formalized. Computability by (deterministic) Turing machines is an elegant example of fimnalization of the intuitive

concept of a computation, lt--~lch formalization, however, cannot entirely capture our original and intuitive notions.

(*) (l|y > we denote a read/write head, by - - - R - > a read-only head and by - - - W - >
a write-only head)

KNOWLEDGE AND EFFICIENT COMPUTATION 359

exacdy because they are intuitive. Following our intuition, probabilistic algorithms [R] [SS] [GK] are means of comput-

ing, though they are not in the previous fonnal model. Similarly, N P is an elegant formalization of the intuitive notion

of a theorem-proving procedure. However, N P only captures a particular way of communicating a proof. It deals with

those proofs that can be "written down in a book".

We want to introduce interactive proof-systems to capture a more general way of communicating a proof. We

deal with those proofs that can be "explained in class". Informally. in a classroom, the lecturer can take full advantage

of the possibility of interacting with the "recipients" of the proof. They may ask questions at crucial points of the

argument and receive answers. This makes life much easier. Writing down a proof that can be checked by everybody

without interaction is a much harder task. In some sense, because one has to answer in advance all possible questions.

Before arguing that our interactive proof systems capture the intuitive notion of a proof we need to ask: what is

intuitively required from a theorem-proving procedure? First, that it is possible to "prove" a true theorem. Second,

that it is impossible to "prOve" a false theorem. Third, that communicating a proof should be efficient in the following

sense, it does not matter how long must the prover compute during the proving process, but it is essential that the

computation required from the verifier is easy.

The theorem-proving procedures we consider are

1) efficient: the "recipient" of a proof must be quickly convinced of its correctness.

2) probabilistic: on input a false n-bit long statement, the recipient may erroneously be convinced that it is correct
1

with very small probability, say -~-. On input a true n-bit long statement, the recipient should rightfully be con-

1
vinced of its correctness with very high probability, say 1 -

2 n

3) interactive: to verify the correctness of a statement, the "recipient" of the proof may actively ask questions and

receive answers from the "prover".

Rather than giving a formal definition of our interactive proof-systems let us present an example.
S

Example 1: l,et Z m denote the set of integers between 1 and m that are relatively prime with m. An element
• ~ . a*

aEZm is a quadratic residue mod n if a = x 2 mod m for some xEZrn, else it is a quadratic nonresidue. Now let
i i

L ={ (m.x) lxEZ m is a quadratic nonresidue }. Notice that LENP: a prover needs only to compute the factorization

of m and send it to the verifier without any further interaction. But looking ahead to zero knowledge proof-systems,

we will consider a more interesting interactive proof-system for L. The verifier B begins by choosing n = Iml ran-

dom members ofZ~n, {rl,r2,...,rn}. For each i, l < i < a , he flips a coin, and if it comes tip heads he forms t i =ri 2 mod

m, and if it comes up tails he forms ti =x ' r i 2 mod m. Then B sends tl.t2,...,tn to A. The prover, having unrestricted

computing power, finds which of the ti are quadratic residues, and uses this information to tell B the results of his last

n coin tosses. If this information is correct, B accepts.

Why does this work? l f (m , x) C l . , then A correctly predicts all last n coin tosses of B aho will definitely accept.

i f(re,x) not in L, then the {ti} are just random quadratic residues, and the prover will respond correctly in the last

part of the computation with probability 1,,"2 n. In Ihct, for each of the last n coin tosses of B, A has probability

exactly 1/2 of guessing it correctly.

360 SESSION 9

We may view our interactive proof-systems as a special service offered by ATE "Dial 144 for mathematical theorem

proving". Some user may want to know whether x belongs to language L and dials 144. lmmediady he is connected

with a Super Expert able to solve all problems. The trouble is that the user does not trust him. He may not be as

expert as he claims or he may be a cheater ready to tell the user fhlsc information. Therefore the user will not take his

word about what is true. He trusts however the coin he flips and, if at the end of the conversation he has been con-

vinced, than lie believes that x EL. In fact he knows that if this was not the case, the probability of being convinced

(taken over his own coin tosses) was exponentially vanishing,

We now address our next question.

2.2 Tile Knowledge Complexity of a Language
To prove that a formula is satisfiable it suffices to exhibit a ~tisfying assignment. This proof, however, appears

to contain more knowledge than the single bit "satisfiable/non-satsfiable" ! Using knowledge complexity, we give a

measure for the amount of additional knowledge that must be transfered during a theorem-proving procedure and

show that, in some cases it may essentially be 0.

Let us view the case in which the additional knowledge is 0 in our ATT scenario. ATI' charges a dollar for each

call to 144. During a call the expert can be asked about only one theorem. Assume that the question is whether x E L ,

i.e. whether x belongs to the set of true theorems. (Here we will assume that x does belong to L .) It is the purpose of

the caller checking the validity of the received proof and, it must be admitted, getting at least two theorems at the
price of one. ATI" does not know whether the caller is a cheater and wants to insure that he only gets that x E L is

true theorem. Can ATF succeed in this? Yes if membership in L can be shown releasing 0 additional knowledge.

Rather than dealing with the general notion, we confine ourselves to discuss a restricted scenario,

Tile particular prover-recipient pair of example 1 possesses the following interesting property. When x E L , A

can show to B that indeed x belongs to L and nothing else. What is a way of expressing this? When x E L . what B

possesses at the end of the proof. First, knowledge of the fact that indeed x is in 1.. which was the main goal of the
proof anyway. Second the actual text of the proof, that is an element e randomly selected from AB x. However, in

this example: once B has been convinced that xE l , , e becomes totally useless to it. In fact B can generate such e's

alone and with the right probability distribution; he can efficiendy sample AB x without A's help. B may perfectly

imitate A by looking at his own coin tosses. When B sends h computed by squaring ri, it will imitate A by answering

"quadratic residue". When B sends h computed by squaring r i and Lhen multiplying it by x, it will imitate A by
answering "quadratic nonresidue". In other words, once B sees that A is able to predict its secret coin tosses, which

"prooves" that x is a non-square mod n, it can predict its own coin tosses by himself as they are not secret to himl

Notice however, that, in example 1. ,4 is not proving quadratic non-residuosity without releasing 0 additional

knowledge. Rather, A is releasing 0 additional knowledge to the specific B of example 1. in t~act, some other B' that

interacts with A may decide to create the ti's in a diflbrent way. For insure:e, such a B may send the sequence of

integers h = i and therefore receive an answer about their quadratic residuosity that it may not be able to compute by

itself if deciding quadratic residuosity is not in probabilistic polynomial time.

However, a (more complexl) intern:dye proof system for proving quadratic non-residuosity that releases 0

knowledge (|o anybody!) can be found in [GMR]. Recently we found a similar proof syslem for proving quadratic

KNOWLEDGE AND EFFICIENT COMPUTATION 361

residuosity as well. This is surprising as no efficient algorithm for deciding quadratic rcsiduosity rood m is known

when m°s factorization is not given. Moreover, all known NP proofs for this problem exhibit the prime factorization

of m. This indicates that adding interaction to the proving process, may decrease the amount of knowledge that must

be communicated in order to prove a theorem.

Zero-knowledge proof systems are a surprise and we believe that they cannot prove membership in every

language. We actually intend to classify languages according to the amount of additional knowledge that must be

released for proving membership in them.

We believe that knowledge complexity is one of the fundamental parameters of a language or, equivalently, of a

theorem-proving procedure. Theorem-proving procedures are in fact intended to communicate knowledge and it is

very natural to classify them according to the amount of knowledge they must communicate.

3. Applications of Knowledge Complexity to Cryptographic Protocols

In traditional computational complexity or communication complexity, the goal is to communicate a.s much

knowledge as possible as efficiently as possible. Since all participants are considered good friends, no one cares if more

knowledge than necessary is communicated. The situation with respect to cryptographie protocols is very different. In

this case there is generally no problem at all communicating the knowledge efficiently, but the whole problem is mak-

ing sure not too much knowledge has been communicated.

Model theoretic knowledge has been used to analyze protocols. For example, in [HR] it has been used to prove

Rabin's "Oblivious Transfer" correct in some setting. However, as pointed out in [FMR], Rabin's oblivious transfer

still lacks a proof of correctness in a complexity theoretic framework.

We believe that knowledge complexity provides the right framework to discuss the correctness of crytographic

protocols. For example, applying these ideas [FMR] modified Rabin's oblivious transfer so that it can be proved

¢orroct.

Knowledge complexity helps in proving or disproving the corr~tness of cryptographic protocols as these are

based on the secrecy of some private information and should preserve this secrecy. "i~e privacy of some information is

what gives us an advantage over our adversaries. Let A (lice) possess the prime factorization of an integer n (say

n=p]'P2), while B(ob) only knows n. During a protocol with B. A must protect the privacy of her information.

Assume that A can perform each step of the protocol without having even to look at the value ofp l and P2. Then it

is easy to show that the protocol did not compromise the privacy of n's factorization, It is also easy to see. however.

that the protocol could not have accomplished any interesting task. in fact A has not made use of her "advantage"!

q~e protocol may accomplish a non-trivial task if. in at least one step of it, A performs a computation ¢ that depends

on Pl and P2. This raises the question:

Will c(P l,P2) betray to much it~onnation about P t and p2?

Classical infi)rmation theory does not provide an answer to this question. Knowledge complexity can. In particular,

1) We can quanlify the amount of knowledge about Pi and P2 that ¢ conveys and

2) We can design protocols so to minimize this amount of knowledge.

362 SESSION 9

We use this to give an upper bound on the number of times a single protocol or a combination of protocols can

be played, using a common secret key, without giving away too much information about the secret key. In addition,

trying to measure the amount of knowlcdge revealed during the execution of a protocol about the secret, may pin

point weaknesses in the dcsign of the protocol.

A most important application of these ideas is that it allows us to prove correctness of protocols in a modular

way. Complex protocols are usually composed of sub-protocols. For instance, many protocols use a sub-protocol for

"coin tossing over a telephone" (Blum [BI1]). However, it is not clear how to use a "normal" definition of correctness

of "coin tossing" to prove the correctness of the main protocol. In general, it appears that much stronger definitions

for these sub-protocols are needed in order to fit them modularly and cleanly inside larger protocols. Full details will

be given in the forthcoming paper on the applications of Knowledge Complexity to the theory of cryptographical pro-

tocol.

Acknowledegement
Many thanks to Oded Goldreich for his many helpful suggestions.

References
[BI1] M. Blum, Cobs flipping by telephone, IEEE COMPCON 1982.

[C] S.Cook, The Complexity of Theorem-Proving Procedures'; Proc. of 3rd STOC, 1971.

[FMR]M. Fischer, S. Micali and C. Rackoff, A Secure Protocol for the Oblivious Transfer, Lecture Eurocrypt 1984.

[GM]S. Goldwasser, and S. Micali, Probabilistic Encryption, JCSS Vol. 28, No. 2, April 1984.

[GM] S. Goldwasser, and S. Mlcali ,Proofi with Untrusted Oracles, Unpublished Manuscript 1983.

[GGM]O. Goldreich, S. Goldwasser, and S. Micali, How to Construct Random Function, 25da FOCS, 1984.

[GMR]S. Goldwasser, S. Micali and C. Rackoff, The Knowledge Complexity of Interactive Proof Systems 17th Annual

ACM Syrup. on Theory of Computing, pp 291-304. Better version to appear on the Journal of ACM.

[GK] S. Goldwasser and J. Killian, A provably Correct attd Provably Fast Primality Test, to appear 18th S'I~)C

[HR] J. Halpern and M.O. Rabin, A Logic to reason about likehood, Proc. of 15th STOC, 1983.

[L] L.A.l.evin, UniversalSequential Search Problems, Probl. Inform. Transm. 9/3 (1973), pp. 265-266.

[R] M. Rabin,

[SS] R. Solovay and V. Strassen A fast Monte-Carlo test for primality, SIAM J. on Comp., 1977, pp. 84-85.

