
15

Pract ical Ut i l i ty of K n o w l e d g e - B a s e d Analyses :
Optimizations and Optimality for an Implementation of

Asynchronous, Fail-Stop Processes*
(Extended Abstract)

Aleta M. Ricciardi
Cornell University

Department of Computer Science
Ithaca, N Y 14853 USA

aleta @cs. corn ell. edu

January 7,1992

Abstract

The Group Membership Problem is concerned with propagating changes in the membership of a group
of processes to the members of that group. A restricted version of this problem allows one to implement
a fail-stop failure model of processes in an asynchronous environment assuming a crash failure model.
While the Isls Toolkit relies on this for its Failure Detector, the current specification of GMP sheds
no light on how to implement it. We present a knowledge-based formulation, cast as a commit-style
problem, that is not only easier to understand, but also makes clear where optimizations to the Isls
implementation are and are not possible. In addition, the epistemic formulation allows us to use the
elegant results of knowledge-acquisition theory to discover a lower bound on the required number of
messages, construct a minimal protocol, and discuss the tradeoffs between the message-minimal protocol
and the optimized Isls implementation.

1 I n t r o d u c t i o n

Process groups have found widespread use in distributed systems; they arise whenever processes cooperate

to perform a task, provide replication for fault-tolerance, etc.. Processes join a group when they recover or

desire to participate in the group's activity, and leave a group when they fail. The general Group Membership

Problem deals with propagating a sequence of changes in a process group's composition to the members of that

group. In [14], Ricciardi and Birman defined a particular version of GMP, and used it to implement fail-stop

processes in an asynchronous environment assuming a crash failure model. In reality, this 'failure detector'

is central to the Isis Toolkit ([2], [3]) so both correctness and speed cannot be undervalued. Unfortunately,

the original specification of GMP [14], while technically sound, sheds no light on how to construct a correct,

fast solution; it is, instead, a description of an execution's desired observable behavior.

In this abstract, we reformulate GMP as a knowledge-based, commit-style problem, viewing any solution

to GMP as one of acquiring and propagating knowledge [9]. This approach proved superior to the behavioral

*Research supported by DARPA/NASA Ames Grant NAG 2-593, and by grants from IBM and Siemens Corporation.

16 Ricciardi

with respect to implementing the failure detector. We show here how the epistemic formulation makes

clear that GMP requires majori ty corroboration on any proposed change, and where optimizations to the

original GMP solution presented in [14] are and are not possible. We further show the knowledge-based

formulation facilitates establishing a lower bound on the number of messages needed to solve GMP, construct

a message-minimal solution, and finally quantify the tradeoff between the given, optimized solution and the

message-minimal solution.

Others have used a knowledge-based approach to analyze a variety of problems in distributed computing

([7], [6], [11], [12], [8]). This work differs both in the problem considered and in demonstrat ing the practical

utility of an epistemic formulation. Like all tools, epistemic analyses will only be used if they are comprehen-

sible and accessible to non-experts, and if the benefits of using them are evident. We give concrete evidence

that such a formulation greatly simplifies building robust, fast solutions to commit-style problems.

GMP is easily stated as a commit problem. While most often associated with database contexts [1], a

commit problem is one in which a unique action must be taken by a group of processes. When the group takes

this action, the action is said to be committed and is (often) irrevocable. In a centralized commit protocol,

a distinguished process is responsible for coordinating the commit among the set of outer processes. If

it is known a priori that the distinguished process (hereafter denoted mgr) will never fail then a reliable

broadcast suffices to propagate and coordinate the action, but if mgr can fail, more complex protocols are

required. Among the issues that must be addressed upon mgr's failure are determining a new m g r , and

re-establishing local commit consistency.

GMP differs from the Atomic Commit Problem [6] and the Negotiated Commit Problem [12] in a number

of ways. Most notably, GMP does not require processes to commit a value when there have been no true

failures (we preclude the trivial solution in another way). In our model, we embody the fact that asynchrony

renders crashed processes, slow processes, and slow messages indistinguishable by positing the existence of

a primitive failure notifier through which a process comes to suspect another of having failed. Notifications

may occur at any point and they interrupt all process events. To ensure liveness, the only restriction on

the failure notifier is that a process waiting for a message from a crashed process is eventually notified of

that process's failure. False notifications are permissible. In this way, we use a modified notion of 'correct '

process : one that is not suspected of crashing.

As a result, despite no real failures having occurred, in GMP it is possible that enough processes are

suspected of failing for agreement to be unattainable. Slightly paraphrasing, both Atomic and Negotiated

Commit require, "If there are no failures, then all processes must decide." The analogous statement for

GMP is, "If there is a group of processes in which none ever believe any of the others faulty, then they all

decide."

While the general theory permits failure notifications based on arbitrary criteria, notifications in real

systems include time-outs, operating system upcalls, and, where available, hardware signals. In practice,

these mechanisms correspond highly to actual failures, and this experience led us to adopt the optimistic

view to failure notifications.

Section 2 describes the environment and model of computation, and Section 3 briefly discusses the formal

logic. Section 4 presents the Strict Group Membership Problem, and uses the logic to specify it formally as

a commit problem. Section 5 contains the optimizations and optimali ty proofs.

Practical Utility of Knowledge-Based Analyses 17

2 T h e E n v i r o n m e n t and M o d e l

We consider a distributed system in which processes communicate only by passing messages to each other,

and in which both processes and communication channels are asynchronous. The communication network is

assumed completely-connected and point-to-point, and its channels are assumed reliable (eventual, exactly-

once delivery of uncorrupted messages) and FIFO. Processes fail by crashing, but due to communication

asynchrony, such events are impossible to detect accurately. Nonetheless, we speculate that there is some

means by which a process comes to suspect another one faulty, and require that it receive no further mes-

sages from a process it believes fault (a process may, for example, disconnect its incoming channel). Lastly,

a process's belief in another 's faultiness is gossiped (or piggy-backed) to other processes in future commu-

nication, whereupon the recipient adopts the sender's belief 1. The gossip and disconnect properties may

isolate suspected faulty processes among those with mutual non-failure beliefs; that is, among all processes

that do not believe each other faulty. Notice that one process's beliefs affect another 's behaviour only if the

first sends a message to the second and only if the second does not believe the first faulty.

Denote by Proc a finite set of process identifiers, {Pl , . . . ,Pn}. A history for process p, hp, is a sequence

of events executed by p, and must begin with the distinct event starlp. Processes may send and receive

messages, and do internal computation. The event sendp(q,m) denotes p sending message m to q, and

recva(P,m) denotes q's receipt of m from p. The distinct event quitp models the crash failure of process p,

after which only other quitp are permitted. Process p executes faultyp(q) upon suspecting q to be faulty or

receiving a message gossiping q's faultiness.

A cut is an n-tuple of process histories, one for each process in Proc, c = (hpl, hp2 , . . . , hp.). We assume

familiarity with Lamport ' s happens-before relation and consistent cuts[lO].
The indexical set Up(c) is the subset of Proc whose members are functional along consistent cut c.

3 T h e Logic

Our specification language is a blend of (branching time) tense and epistemic [9] [5] logics. The basic semantic

entities of this logic are consistent cuts; i.e. logical formulas are evaluated along consistent cuts, as in [15]

and [13]. Informally, two cuts are p-equivalent exactly when the local state o f p in each cut is identical; they

are causally related if one is apref ix of the other. The following modalities are used :

* Kp¢ - "p knows ¢". Holds along c when ¢ holds along every p-equivalent cut.

• DG¢ - "¢ is distributed knowledge among the group G". Holds along e when ¢ would be known to the

members of G if they pooled their local knowledge at c.

• 0 ¢ - "¢ is henceforth true". Holds along c when every cut containing c as a prefix satisfies ¢.

• 43¢ - "¢ has always been true". Holds along c when every prefix of c satisfies ¢.

The indistinguishability of failures from communication delays seems to warrant using the doxastic modal-

ity [16] to refer to local failure beliefs. However, the Disconnect property results in a much stronger local

interpretation than belief. In particular, once a process suspects another is faulty, it behaves as if it knows

1 The re is no h a r m in a p rocess be l i ev ing i t se l f f au l ty t h r o u g h gossip.

18 Ricciardi

that process has crashed. Whereas the standard doxastic interpretation would give equal weight to belief

in faultiness and belief in non-faultiness, our model favors one before the event faultyp(q) and the other

after. By closing its incoming channel from a suspected-faulty process, a process behaves as if the system

were synchronous; as if it knew that a suspected process could not send further messages. In fact, we have

modeled fail-stop process failures.

We express this ambiguity with two formulas, one of which is local to the suspecting process while the

other is local to no process. Formula ¢ is local to process p ifp always knows whether it is true [5]; KpeVKp~¢

holds along all consistent cuts. In this way, the standard knowledge operator models exactly the behavior

process p exhibits upon executing faultyp(q). Throughout this abstract, the statement "p believes (or knows)

q is faulty" should be taken as an artifact of our model's behavioral requirements, not literally. When ¢

is local to p and p G G, then distributed knowledge of ¢ among G is equivalent to p's local knowledge :

Da¢ ~ Kp¢. Also note that local formulas depend upon their agent's functional status for definition; a

process can only know things if it is functioning.

Chandra and Toueg impart a pure doxastic interpretation to local failure beliefs [4]. In their work, despite

belief in a process's faultiness, all of its messages must be delivered, as must all messages to it. The difference

could also be termed one of optimism versus pessimism.

4 The Group Membersh ip Problem

The general Group Membership Problem is concerned with propagating changes in a process group's compo-

sition to each of its members. In many situations, a group functions correctly only when its members have

identical local views of its composition. For example, in a token passing implementation of atomic broad-

cast, processes' local views and a static, linear ordering on process identifiers determine which process each

group member believes holds the token. Thus, an important instance of GMP ensures that each member

of a group sees identical changes to the group's composition, and in the same order. Other pertinent issues

include partitions, and join and leave behavior. This abstract is concerned with a single process group and

the particular instance of GMP described in [14], hereafter Strict GMP.

Let Membp(c) denote p's local view of the group along consistent cut c, and let Memb~ denote the x ~h

instance of p's local view. The system view determined by S along c is defined to be :

I
~ s n up (c) =

Syss(c) = Membp(c) Vp, q E (S M Up(c)).

(Membp(c) = Membq(c))
undefined otherwise

Tha t is, if no members of S are functional, the system view is empty; if all functional members have identical

local views, the system view is any local view; and if the functional members ' local views disagree, the system

view is undefined.

In Strict GMP, every system execution must exhibit a maximal sequence of temporally unique (at most

one system view exists along any cut) system views. Moreover every member of a system view must also

be a member of the group determining it. Since Strict GMP requires a sequence of system views, integer

instances are well-defined; let Sys * be the x th version of the system view. We assume a commonly-known,

linear rank on the members of Sys * , in practice determined by length of membership.

Practical Utility of Knowledge-Based Analyses 19

The Appendix contains a skeleton of the solution to Strict GMP presented in [14]. This protocol (hereafter

AFS for Asynchronous Fail-Stop) is a combination of two- and three-phase centralized commit protocols ~. If

mgr is not believed faulty for 'suitably long '3 a two-phase commit protocol suffices. I f mgr is ever believed

faulty, a three-phase reconflguration protocol is run. A process initiates reconfiguration if it believes every

process of higher rank than itself is faulty. In the first phase, the initiator collects local view information

from the outer processes, and determines an update that would re-establish local view consistency. In the

second phase, it proposes this update and awaits responses, broadcasting a commit in the third phase.

AFS is a full-information protocol; all relevant state information is sent with each protocol message. In

Strict GMP, relevant information are local beliefs about failures, and during reconfiguration, a process's local

view and the value of a pending commit (if it exists). Outer processes can infer an init iator 's respondents

from its failure beliefs.

For the rest of this abstract , the phrase "submission for version x" refers to either the value mgr invites

processes to commit for version x, or to a reconfigurer's proposal for version z.

4 . 1 S t r i c t G M P D e f i n i t i o n s

Strict GMP, as a commit protocol, requires functional processes in a given system view to vote on a proposed

update to their local views, and commit the update when particular conditions are met .

Let V be a set of values, one of which the processes in the (z - 1) ' t system view must commit to install

the z *h system view : V C ({remove, add} × Proc). Before commit t ing a given update, a process may vole

for more than one update value, due to conflicting proposals from competing coordinators. As in Atomic

Commit , in no execution are votes for any version pre-determined. The notat ion v, refers to a particular

value, v, and version of the system view for which v is submit ted and/or commit ted. The same value may

be submit ted for different versions.

The following are formulas, events, and notation used to phrase Strict G M P as a commit problem.

Throughout this abstract , events are written in italics, while formulas are in SMALL CAPS font.

• vowEp(v,) holds along consistent cut c if votep(v,) is the most-recent voting event p, with local view

Mernb~- 1, executed.

• COMMITp(V~) holds if p executed the commit event commitp(v~,) to form its x th local view.

• FAULTYto(q) holds if p has executed faultyp(q). We omit the subscript when we are not concerned with

which process believes q faulty.

The formulas FAULTYp (q), VOWEp(Vx), and COMMITp(Vx) are local to p; FAULTYp (q) and COMMITp(Vx)

are stable.

• DOWN(q) holds if q has crashed. The distinction between DOWN(q) and FAULTYp (q) is that DOWN(q)

is never local to any process : D~IfpDOWN(q) A Q-~Kp-~DOWN(q).

• Maj(S) is the set of all major i ty subsets of S.

2 A communication phase consists of a process broadcasting a message to a group of processes, and collecting their responses
to it. In truth, this protocol is one-and-one-half (broadcast, collection, broadcast), and two-and-one-half phase protocols, but
this is awkward.

3for the duration of an update it initiates

20 Ricciardi

* STABLEVOTEs(Vx) holds when S is a (non-null) subset of Sys ~-1 , each process of which has most-

recently voted for v~ and will not vote for another v~. Moreover, every process not in S is (distributedly)

known faulty by the group S :

STABLEVOTEs (Vx) d_ef

A (voTE (v)^ A ^ A sFA,L (q)
pES v'~v qffS

The set S must have at least one functioning process for STABLEVOTEs (Vx) to hold. We use STABLEVOTE(Vx)

when we are not concerned with the particular set S, according to which vx is stable.

4 . 2 S t r i c t G M P S p e c i f i c a t i o n

A protocol is a solution for Strict G M P if every execution of it satisfies 4 .

V a l i d i t y I f p commits vx, p is in a subset of Sys ~-1 according to which v is stable for x :

S c Sys ~- 1

s for v t U n i q u e n e s s I f p commits vx, no other process, q, ever commits v~, ~ v :

GOMMITp(Vx) ~ A A O~GOMMITq(Vlx)
v'~v q6Proc

T o t a l i t y If p commits v~, then for every other process, q, either 1) q is not in Sys x or 2) q eventually

commits v~ or 3) q eventually fails :

COMMITp(v~) ::::~ ~o ((q~SysX)V(OCOMMITq(Vx))V(~DOWN(q)))
qE C

I t is easy to see [14] that Uniqueness cannot be guaranteed without additional restrictions on stability.

D e f i n i t i o n Value vx is committably stable (c-stable) if and only if v~ is stable with respect to a major i ty

subset ofSysX-1 : SS E Maj(Sys x-1).(SThBLEVOTEs(V~)). The formula C-SThBLE(vx)holds exactly when

vx is c-stable.

Uniqueness and Validity then combine to restate the latter as

ve Maj(Sys ~-1)

4In fact, Strict GMP has other requirements (e.g. constraining permissible votes, and specifying initial conditions) but these

are not relevant to the current work.

Practical Utility of Knowledge-Based Analyses 21

5 Optimality

These analyses use two notions of optimality : a commit protocol is knowledge-minimal if processes commit

a value as soon as they know it is safe to do so; it is message-optimal if it is impossible to commit a value

safely in fewer messages. In this section, we show that parts of the A F S protocol are knowledge-minimal,

and how the knowledge-based formulation of Strict GMP led to optimizations in the other three parts. We

also derive a lower bound on the number of messages required to solve Strict GMP, and compare A F S with

a message-optimal protocol. While we believe the optimizations to be at least knowledge-minimal, different

failure scenarios make analysis of whether they are optimal in either sense beyond the scope of this work.

For these purposes, the most important aspect of correctness (proven in [14]) is that at most one value

attains c-stability for any given version, from which it follows that a process may safely commit v= as soons

as vx becomes c-stable. On the other hand, a simple derivation from Validity shows that every solution to

Strict GMP necessarily satisfies COMMITp(V=) ~ I~pC-STABLE(V=), SO the 'earliest' a process can commit

v= is as soon as it knows v= is c-stable : I(pC-STABLE(Vx) ~ COMMITp(Vx). We call such a commit protocol

a 1K-commit protocol since a process can commit with one 'level' of knowledge.

Denote by M-sub(re) mgr's Phase I invitation message, and by M-eora(vx) its Phase II commit message.

Let R - i n t (x) denote the reconfigurer's Phase I interrogation query when in local version x - 1, R-sub(v=)

its Phase II proposal, and R-cora(v=) its Phase III commit message. We use eom(vx) be any commit message

(H-cora(v=) or R-com(v=)), and sub(v=) for any submit message.

D e f i n i t i o n Let p~ send message m, and let ack(m) denote a message sent by a recipient of m, back to p~

acknowledging receipt of m.

* Recipients(p',m)d= ef {plrecvp(p' ,m)} *AcksSent(p ' ,m) d--el {plsendp(p' ,ack(m))}

. Ack Rcvd(p',m)% {p I
At all times, process failures and message asynchrony render AcksRcvd(p',m) C AcksSent(p',m) C

Recipients(p ~, m), for any p and m. This is significant in the next definition, and in the propositions that

follow. To describe the most general, observable system state from which it can be inferred that a value is

c-stable, we define a 'successful initiator' to be one whose submission can possibly be committed.

D e f i n i t i o n Process p' is successful for v= if and only if a majori ty subset of Sys x-1 acknowledge p~'s

submission: AcksSent(p', sub(v=)) E Maj(Sys =-1). ,,,

This definition leaves open whether p~ actually received any of the acknowledgements sent to it. While

this is obviously relevant in determining whether p' is able to commit the update, in the absence of concrete

evidence, it is impossible for a subsequent reconfigurer to know whether p' succeeded in committing the

update anywhere. However, Uniqueness and Totality require a reconfigurer to assume the update was

committed ('invisibly' to it) if it determines that p' could possibly have issued the commit message ([14]

covers this issue in more detail).

Correctness of the AFS protocol implies :

Fac t 5.1 In AFS if p I is successful for vx, no value unequal to v is thereafter submiffed for version x.

Fac t 5.2 In A F S if p' is successful for v=, then v= is c-stable.

22 Ricciardi

Fact 5.3 In AFS if VOTEp(V,) holds for a majority of Sys ̀-1 along any consistent cut, then C-STABLE(V,)

holds along that cut: (VGeMaj(Sys ,_ l) (Av¢G VOTEp(v=))) ~ C-STABLE(V,).

5.1 K n o w i n g S t a b i l i t y

To understand when a process executing AFS knows a value is c-stable, we analyze the protocol's communi-

cation phases. We show two communication phases are necessary when the initiator is mgr. In the interest

of brevity, we restrict this analysis to instances of AFS when a given process is either the first mgr, or has

been mgr for at least one completed update of the system view; the issues arising in the transition of a

process from reconfiguration initiator to mgr are too complex for discussion here.

We also show that in three of the four possible global states that may exist at the start of reconfiguration

(i.e. the degree and type of local view divergence), processes learn c-stability earlier than when they commit

in AFS , allowing us, in two cases, to eliminate a full phase of communication, and to preclude a third entirely.

We show it is impossible to improve the fourth.

D e f i n i t i o n Let IsMGR(p', x) hold if a majority of Sys =- 1 believe p' is the highest-ranked, non-faulty process.

Then version x has a clean starting point if z = 1, or IsMGrt(p', x -- 1) held throughout the formation of

Sys ' - 1 .~

Fact 5.4 In AFS if x has a clean starting point, and if mgr submits v=, then no process in $ys =-1 has

previously voted for v=.

P r o p o s i t i o n 5.1 In AFS Kmgr C-STABLE(v.) ~ AcksRcvd(mgr, M-sub(v,)) E Maj(Sys x-1).

P r o o f "=.~" We first show Kmgr VOTEp(V.) ~ p E AcksRcvd(mgr , M-sub(v=)).

Building on [5], Mazer [12] showed that if p learns Cq, a formula local to q, and if processes a) are

asynchronous, or b) can experience crash failures and Cq can only be made true by q, then p must receive

a message from, or indirectly from, q implying Cq. VOTEq(V=) is such a formula, and our system is both

asynchronous and subject to process failures.

Since x has a clean starting point, no process in Sys "-1 had voted for v= before receiving M-sub(v,)

(Fact 5.4). Inspecting AFS shows that a process votes after receiving M-sub(v=) and before responding to it,

and since VOWEp(v=) has not held previously, it holds for the first time in the execution immediately before

p acknowledges M-sub(v,). mgrcan infer VOTER(v=) upon receipt of p's response to M-sub(v,). Finally,

outer processes do not send messages to one another 5, so no other process can have learned VOTEp(V.)
independently. As a result, mgrcannot have learned VOTEp(vz) from a process other than p. The only

message p sends is ack(M-sub(v=)) so Kmgr VOTEr(v=) :::*. p E AcksRcvd(mgr, H-sub(v=)).

Let VOTEG(v=) denote ApeG VOTEr(v=). Then,

g m g r C-STABLE(v,) ~ V Kmgr C-STABLEG(v,) ~ Kmgr VOTEG(Ux)

G~Maj(Sys " - 1)

C _C AcksRcvd(mgr, H - s u b (v .)) ~ AcksRcvd(mgr, M-sub (v .)) E Maj(Sys ` - 1).

"¢=" The composition of AcksRcvd(mgr, M-sub(v=)) is local to mgr. Since AcksRcvd(mgr, M-sub(v=)) C

AcksSent(mgr, M-sub(v=)), mgr knows it is successful for v,. Using Fact 5.2, Kmgr C-STABLE(v.). •

5except during reconfiguration, in which case mgr has been isolated

Practical Utility of Knowledge-Based Analyses 23 .

Proposition 5.1 shows that whenever x has a clean starting point m g r cannot know c-stability of any

value until after collecting responses. We now use this to show that AFS , during a m g r - i n i t i a t e d update

begun from a clean starting point, is knowledge-minimal.

Propos i t ion 5.2 (T w o - P h a s e Necess i ty) In AFS i f X has a clean s tar t ing point, then a process commi t s

vx during a m g r - i n i t i a t e d update as soon as it knows C-STABLE(vx) :

1. s endp (mgr , ack (M-sub (v z))) ~ "[~]~KpC-STABLE(Vx)

e. recvp(mgr,M-¢om(v)) KpC-STABLZ(v)

P r o o f Since x has a clean starting point, no process voted for v, before receiving H-sub(v~). Propo-

sition 5.1 and inspecting the protocol show that mgrdoes not know C-STABLE(Vx) until after it has sent

all M-sub(vz) messages; therefore, M-sub(v~) cannot have implied C-STABLE(Vz). Furthermore, neither p's

internal voting event nor its acknowledgement add to its knowledge [5], establishing (1). Outer processes

do not communicate amongst themselves so p cannot have learned C-STABLE(Vx) independently or from

another outer process since receiving M-sub(re). In consequence, the earliest p can learn C-STABLE(Vx)

is upon receipt of m g r ' s second phase (commit) message. Since AFS is full-information, C-STABLE(vx) is

propagated by M-com(v~). •

5 .2 O p t i m i z a t i o n s

This section presents optimizations made possible by a knowledge-theoretic analysis of the degree of incon-

sistency that may exist once m g r is believed faulty.

Fac t 5.5 Let r be a reconfiguration in i t ia tor with local version x - 1. Then in AFS , when collecting interro-

gation responses exactly one o f the fol lowing three scenarios is possible : a) r learns some process has local

version x; b) r learns some process has local version x - 2; c) all processes f rom which r receives responses

have local version x - 1.

In the first instance, r learns C-STABLE(Vx) at the end of reconfiguration Phase I. To optimize AFS , r,

instead of proposing vx and collecting responses, commits v, and propagates C-STABLE(Vx) to any process

whose acknowledgement also indicated local version x - 1. This optimization saves approximately 2]Sys ~-1 I

messages. Another optimization precludes case b), for upon receiving R- in t (x) , a process with local version

x - 2 learns C-STABLE(Vx_I). It can commit that update and respond to the reconfigurer with its new

version. In c), if a majority of Sys ~-1 (among the interrogation respondents) also indicate having most-

recently voted for the same value, r learns that value is c-stable; as in the first optimization, reconfiguration

Phase II is unnecessary.

P r o p o s i t i o n 5.3 (O p t i m i z a t i o n 1) I f r is a reconfiguration in i t ia tor with local version x - 1, and some

process ' s response to R-in t (x) indicates local version x, then r learns C-STABLE(vz) upon receipt o f a c k (R - i n t (x))

f rom that process.

P r o o f Upon receipt of ack(R-int(x)) from any p with local version x, KrCOMMITp(Vx). Distributing

Kr over implication in Validity gives /~rC-STABLE(Vx). •

24 Ricciardi

Propos i t i on 5.4 (Opt imiza t ion 2) I f r is a reconfiguration in i t ia tor with local version x - 1, then any

process, p, with local version x - 2 learns C-STABLE(v~_i) upon receipt o f a - i n t (x -- 1) f r o m r.

P r o o f Similar to Proposition 5.3 •

P ropos i t i on 5.5 (Opt imiza t ion 3) Let r be a reconfiguration in i t ia tor with local version x - 1, and sup-

pose every process in AcksRcvd(r, R-int(x)) indicates local version x - 1. I f a ma jor i t y o f Sys x-1 (among

AcksRcvd(r , R-int(x))) also indicate having most-recent ly voted f o r some value, vx , then I£rC-STABLE(Vx).

P r o o f Follows from Fact 5.3. •

The final proposition shows AFS is knowledge-minimal when all respondents to R-int(x) report the same

local version, but no majority subset has most-recently voted for the same value.

P ropos i t i on 5.6 (Three -Phase Necessi ty) Let r be a reconfiguration in i t ia tor with local version x - 1,

and suppose every process in AcksRcvd(r, R-±nt(x)) indicates local version x - 1. I f no ma jor i t y subset o f

Sys x-1 (among AcksRcvd(r, R-int(x))) indicate they have most-recent ly voted f o r the same value, then f o r

all v~ and p E AcksRcvd(r, R-int(x)),

1. sendp(r,ack(R-sub(vx))) ~ G~KpC-STABLE(Vz)

recvp(r,S-¢o (v)) KpC-STABLZ(V)

Proof Upon initiating reconfiguration, r does not know whether any value is c-stable for version x; it has

not received ~I-com(x~) from the previous mgr, has not learned C-STASLE(v~) from a previous reconfigurer,

and has not received messages from non-initiator processes. Its interrogation cannot imply C-STABLE(v~),

and clearly p's response to r does not add to p's knowledge.

Given that no majority of r's respondents have voted for the same value, r cannot distinguish at the

end of Phase I which, if any, of the reported pending values may be c-stable; it may be able to envision

scenarios in which each of the reported values are c-stable. Correctness of AFS only ensures that if a value

and v~ are values r's respondents report pending, correctness is c-stable, r will propose that value; if v~
of AFS only guarantees send, . (p ,R-sub(v~)) =:¢, I~r~C-STABLE(Vtx), and implies nothing about whether v~ is

c-stable. Thus, R-sub(v~) does not imply C-STABLE(vx) , and since outer processes have not sent messages

amongst themselves, none can have learned c-stability (before receiving R-sub(vx)) independently. Again,

neither p's vote nor its response add to its knowledge.

As a side note, r choosing to propose v~ and an outer process receiving this proposal does not even

guarantee v~ will become c-stable. This is due to possible failures in the second and third phases of reconfig-

uration : r may fail before sending all the proposal messages, or a majority may fail before receiving and/or

voting for the proposal, both of which result in vx not becoming c-stable. Moreover, both r and the outer

processes can envision these scenarios.

As in Proposition 5.2, r learns C-STABLE(Vx) if AcksRcvd(r, R-sub(xx)) is a majority subset of Sys ~-~ ,

and outer processes learn it upon receipt of r's commit message. •

5 .3 M i n i m a l i t y

We use Mazer's Message Chain Theorem [12] to determine the minimal number of messages required by any

solution to Strict GMP. Similar work for different commit-style problems is in [6] and [11]. For simplicity,

we assume no process has knowledge of another's votes.

Practical Utility of Knowledge-Based Analyses 25

= ÷ 1 w e show th t, ora given set S, at lo t 2 (. s - 1) moss ges are necos ary for any Let

member of S to learn c-stability of a value, and that any algorithm using fewer than (IS[- 1) + 2(its - 1)

messages is not Total.

We have already shown that a process can commit a value as soon as it knows it to be c-stable, and that

any solution to Strict GMP is necessarily a 1K-commit protocol. Let G E Maj(S) and let C-STABLEG(Vx)
hold. Then I~p,C-STABLE(Vx) if and only if

A A A A
pea pEG vl~v qEe

Since VOTEp(Vx) is local to p, pl must receive (at least) one message for Kp,vOTSp(v~) to hold, so at least

Its - 1 messages are needed to satisfy the first conjunct. For the second conjunct, nothing in the specification

of Strict GMP ensures pl that p's vote for vx is stable. One solution is initial stability (each process votes

for one and only one value), but then there are many initial configurations in which no majori ty concurs

on a specific value 6. Alternatively, if we allow processes to vote for more than one value over time, p~ must

somehow learn stability. It is clear that processes cannot independently (i.e. without communicating) decide

when to stabilize a vote, as this degenerates to initial stability. Therefore, the decision to stabilize a vote

must be coordinated to ensure that a majori ty stabilize a particular value, and this requires at least Its - 1

more messages, giving a total of 2(Its - 1) messages before p' can commit.

There are two possible patterns of communication :

• p' can passively collect votes until a single value has been voted for by a majority. At this point it

sends a 'stabilize' message to each process in the majority subset. Note that p' cannot commit here

since it does not yet know whether each outer process has stabilized 7. This requires an additional

Its - 1 messages, totaling 3(Its - 1) messages, before p' can commit.

• p' can choose a value, and actively propagate it to a majori ty subset. Upon receipt of the value, each

process votes and stabilizes, then sends confirmation of its vote back to p'. This approach requires a

minimum of 2(Its - 1) messages for p' to learn c-stability.

Finally, Totali ty requires that once p' commits a value, every functional process must also commit that

value. If every functional process undertakes to learn c-stability in the fashion outlined above, a minimum

of (IS] - f) x 2(Its - 1) total messages are needed (where f is the number of crashed processes). On the

other hand, if p*, having learned c-stability ' the hard way', propagates this fact, only an additional I S I - 1

messages are needed s, giving a minimal total of (ISI - 1) + 2(Its - 1) messages.

In AFS , installing version x from a clean starting point and assuming m g r is not thought faulty, uses

at most 3(ISys ~-1 I - 1) - f messages. The extra messages (approximately ISys ~-z I - f - 1) represent

the tradeoff between compressing m g r ' s faultiness determinations to one phase, and spacing them out over

possibly ItSys~_l + 1 waiting periods. The worst case ' t ime' occurs when p' chooses the worst sequence

of processes from which to get responses : if, from the initial majori ty subset it chooses, p' receives only

ItSysX-1 - 2 responses, then observes []Sys: - I] 1 - 2 successive 'failures' before getting the last response.

6This is not t rue for IVI< 2.

7A technicality now, but impor tan t in practice when reconfiguration may be ongoing.

8The lack of .f here arises from the impossibility of p' knowing whether another process is t ruly crashed.

26 Ricciardi

6 Conc lus ion

This abstract presented a knowledge-based formulation of Strict GMP and an analysis of a particular so-

lution to it. The knowledge4heoretic approach easily identified three ways to optimize AFS and proved the

remaining cases knowledge-minimal. We also quantified the minimal number of messages needed to solve

Strict GMP under certain assumptions, outlined a minimal algorithm, and compared it with AFS . Given

that AFS actually implements a failure detection service for asynchronous systems, its speed and correctness

are crucial. The simplicity with which optimizations were identified demonstrates the practical utility of

knowledge-based reasoning.

In fact, much of distributed computing can be phrased in terms of commit-style problems. Tile goals

and benefits of distribution are increased availability and performance. This involves some form of fork-join;

process groups arise at the fork (for example, when replicating for fault-tolerance), and engage in some level

of agreement at the join. Unfortunately, if knowledge-based reasoning is to gain acceptance among systems

programmers, we must demonstrate, clearly and simply, its utility. Epistemic logic and its applications must

be 'user-friendly' and comprehensible, and it should be clear that there are tangible benefits (e.g. correctness

guarantees, optimality) to this approach to programming.

A c k n o w l e d g e m e n t s

The author thanks Ken Birman and Keith Marzullo for their discussions and enthusiasm for this work, and

Vassos Hadzilacos for his careful comments in reviewing this abstract.

References

[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Systems. Addison-Wesley Publishing Co., 1987.

[2]

Concurrency Control and Recovery in Dalabase

K. P. Birman and T. A. Joseph. Exploiting Virtual Synchrony in Distributed Systems. In Proceedings
of the Eleventh ACM Symposium on Operating Systems Principles, 1987.

[3] K.P. Birman. The Process Group Approach to Reliable Distributed Computing. Technical Report
TR-91-1216, Cornell University, July 1991.

[4] T. D. Chandra and S. Toueg. Unreliable Failure Detectors for Ashynchronous Systems. In Proceedings
of the Tenth Annual A.C.M. Symposium on Principles of Distributed Computing. ACM, August 1991.

[5] K. M. Chandy and J. Misra. How Processes Learn. Distributed Computing, 1(1):40-52, 1986.

[6] V. Hadzilacos. A Knowledge Theoretic Analysis of Atomic Commitment. Private Communiation, 1991.

[7] J. Y. Halpern. Using Reasoning About Knowledge to Analyze Distributed Systems. Annaul Review of
Computer Science, II, pages 37-68, 1987. Ed. J.F.Traub, Annual Reviews, Inc.

[8] J. Y. ttalpern and R. Fagin. A Formal Model of Knowledge, Action and Communication in Distributed
Systems. In Proceedings of the 4th ACM Symposium on the Principles of Distributed Computing, pages
224-236, August 1985.

[9] J.Y. Halpern and Y. Moses. Knowledge and Common Knowledge in a Distributed Environment. JA CM,
1990.

Practical Utility of Knowledge-Based Analyses 27

[10] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System. Communications of the
A.C.M., 21(7):558-565, 1978.

[11] M. Mazer and F.H.Lochovsky. Analyzing Distributed Commitment by Reasoning About Knowledge.
Technical Report CRL 90/10, Digital Equipment Cambridge Research Lab, 1990.

[12] M. S. Mazer. A Link Between Knowldege and Communication in Faulty Distributed Systems. In
R. Parikh, editor, Proceedings of the 3rd Conference on the Theoretical Aspects of Reasoning About
Knowledge, pages 289-304, 1990.

[13] A. Ricciardi. Completeness of a Temporal Logic for Asynchronous Systems. Technical Report 89-1052,
Cornell University Computer Science Department, November 1989.

[14] A. Ricciardi and K. Birman. Using Process Groups to Implement Failure Detection in Asynchronous
Environments. In Procedings of the Tenth Annual A.C.M. Symposium on Principles of Distributed
Computing. A.C.M., August 19-21 1991. This is an extended abstract of Cornell University Technical
Report TR91-1188, of the same name.

[15] K. E. Taylor. Knowledge and Inhibition in Asynchronous Distributed Systems. PhD thesis, Cornell
University, July 1990.

[16] M. R. Tuttle. Knowledge and Distributed Computation. PhD thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, 1989. Department of Electrical Engineering and Computer Science.

28 Ricciardi

A p p e n d i x - T h e AFS S o l u t i o n

This is a scaled-down version of the AFS solution. It

focuses only on the Communication structure, and

vote and commit events, while ignoring failure be-

liefs and events. Let Bcastp(G, m) denote the set of

events Vq e G(send,(q,m)). This sequence of events

is executed atomically but is not failure-atomic.

Task : Update Algori thm- mgr
/* Local version z - 1 */

B e g i n :

choose an update value v~ ;

Bcastmgr (M e m b ~ , ~ r , M-sub(v~));

votemgr (vx);
x--1 Vp E Membmgr do

rccvmgr (p,aek(S-sub(vz))) or timeou£(p);
/* End of Response Collection */

i f AcksSent(mgr,M-sub(v~)) E Maj(Sys ~-1)

t h e n

Bcastmgr (Membmgr ~l-com(v~));

commitmgr (v~);
E n d .

Task : Update Algori thm- Outer Process, p

B e g i n :

~ecvp(mg~ ,n-sub(.e));
vote,(v~);
send, (mgr ,ack(H-sub(vx)));

~ecvAmg~ ,n-¢o.(v~));
commitv(v~);

End .

Task : Reconfiguration - Initiator, r

/* Local version x - 1 */

Beg in :

Bcast~(Memb~ -1 , R- in t (x));

Vp G Membr x-1 do

recvr(p,aek(R-int(x))) or timeoul(p);
i f AcksSent(r ,R-int(x)) E Maj(Sys z-1)

t h e n

Determine an update proposal, vz ;

Bcastr(Mernbr ~-1 , R-sub(vz));
vo~e~(v~);
Vp E Mernb~ -1 do

recvr(p,aek(R-sub(v~))) or timeoul(p);
i f AcksSent(r,R-sub(vx)) G Maj(Sys z-1)

t h e n

Bcaslr (Membr z- 1, R-¢om(vr));

commitr(vz);

Begin Update Algorithm as mgr;
E n d .

Task : Reconfiguration - Outer Process, p

Beg in :

recvA~,R-i~t(~));
send, (r,local state information) ;

reevA~,R-snb(v~));
vote,(v~);
send, (~,a~k(R-sub(~)));
~ecvA~,R-¢om(v~));
commitp(vz);

Begin Update Algorithm with r as new mgr;
End .

