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Abstract 

The Group Membership Problem is concerned with propagating changes in the membership of a group 
of processes to the members of that group. A restricted version of this problem allows one to implement 
a fail-stop failure model of processes in an asynchronous environment assuming a crash failure model. 
While the Isls Toolkit relies on this for its Failure Detector, the current specification of GMP sheds 
no light on how to implement it. We present a knowledge-based formulation, cast as a commit-style 
problem, that is not only easier to understand, but also makes clear where optimizations to the Isls 
implementation are and are not possible. In addition, the epistemic formulation allows us to use the 
elegant results of knowledge-acquisition theory to discover a lower bound on the required number of 
messages, construct a minimal protocol, and discuss the tradeoffs between the message-minimal protocol 
and the optimized Isls implementation. 

1 I n t r o d u c t i o n  

Process groups have found widespread use in distributed systems; they arise whenever processes cooperate 

to perform a task, provide replication for fault-tolerance, etc.. Processes join a group when they recover or 

desire to participate in the group's activity, and leave a group when they fail. The general Group Membership 

Problem deals with propagating a sequence of changes in a process group's composition to the members of that 

group. In [14], Ricciardi and Birman defined a particular version of GMP, and used it to implement fail-stop 

processes in an asynchronous environment assuming a crash failure model. In reality, this 'failure detector'  

is central to the Isis Toolkit ([2], [3]) so both correctness and speed cannot be undervalued. Unfortunately, 

the original specification of GMP [14], while technically sound, sheds no light on how to construct a correct, 

fast solution; it is, instead, a description of an execution's desired observable behavior. 

In this abstract, we reformulate GMP as a knowledge-based, commit-style problem, viewing any solution 

to GMP as one of acquiring and propagating knowledge [9]. This approach proved superior to the behavioral 

*Research supported by DARPA/NASA Ames Grant NAG 2-593, and by grants from IBM and Siemens Corporation. 



16 Ricciardi 

with respect to implementing the failure detector. We show here how the epistemic formulation makes 

clear that  GMP requires majori ty corroboration on any proposed change, and where optimizations to the 

original GMP solution presented in [14] are and are not possible. We further show the knowledge-based 

formulation facilitates establishing a lower bound on the number of messages needed to solve GMP, construct 

a message-minimal solution, and finally quantify the tradeoff between the given, optimized solution and the 

message-minimal solution. 

Others have used a knowledge-based approach to analyze a variety of problems in distributed computing 

([7], [6], [11], [12], [8]). This work differs both in the problem considered and in demonstrat ing the practical 

utility of an epistemic formulation. Like all tools, epistemic analyses will only be used if they are comprehen- 

sible and accessible to non-experts, and if the benefits of using them are evident. We give concrete evidence 

that  such a formulation greatly simplifies building robust, fast solutions to commit-style problems. 

GMP is easily stated as a commit problem. While most often associated with database contexts [1], a 

commit  problem is one in which a unique action must be taken by a group of processes. When the group takes 

this action, the action is said to be committed and is (often) irrevocable. In a centralized commit  protocol, 

a distinguished process is responsible for coordinating the commit among the set of outer processes. If 

it is known a priori that  the distinguished process (hereafter denoted mgr)  will never fail then a reliable 

broadcast suffices to propagate and coordinate the action, but if mgr can fail, more complex protocols are 

required. Among the issues that  must be addressed upon mgr's  failure are determining a new m g r ,  and 

re-establishing local commit consistency. 

GMP differs from the Atomic Commit  Problem [6] and the Negotiated Commit  Problem [12] in a number 

of ways. Most notably, GMP does not require processes to commit a value when there have been no true 

failures (we preclude the trivial solution in another way). In our model, we embody the fact that  asynchrony 

renders crashed processes, slow processes, and slow messages indistinguishable by positing the existence of 

a primitive failure notifier through which a process comes to suspect another of having failed. Notifications 

may occur at any point and they interrupt all process events. To ensure liveness, the only restriction on 

the failure notifier is that a process waiting for a message from a crashed process is eventually notified of 

that  process's failure. False notifications are permissible. In this way, we use a modified notion of 'correct '  

process : one that  is not suspected of crashing. 

As a result, despite no real failures having occurred, in GMP it is possible that  enough processes are 

suspected of failing for agreement to be unattainable. Slightly paraphrasing, both Atomic and Negotiated 

Commit  require, "If there are no failures, then all processes must decide." The analogous statement for 

GMP is, "If there is a group of processes in which none ever believe any of the others faulty, then they all 

decide." 

While the general theory permits failure notifications based on arbitrary criteria, notifications in real 

systems include time-outs, operating system upcalls, and, where available, hardware signals. In practice, 

these mechanisms correspond highly to actual failures, and this experience led us to adopt the optimistic 

view to failure notifications. 

Section 2 describes the environment and model of computation, and Section 3 briefly discusses the formal 

logic. Section 4 presents the Strict Group Membership Problem, and uses the logic to specify it formally as 

a commit problem. Section 5 contains the optimizations and optimali ty proofs. 
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2 T h e  E n v i r o n m e n t  and M o d e l  

We consider a distributed system in which processes communicate only by passing messages to each other, 

and in which both processes and communication channels are asynchronous. The communication network is 

assumed completely-connected and point-to-point, and its channels are assumed reliable (eventual, exactly- 

once delivery of uncorrupted messages) and FIFO. Processes fail by crashing, but due to communication 

asynchrony, such events are impossible to detect accurately. Nonetheless, we speculate that  there is some 

means by which a process comes to suspect another one faulty, and require that  it receive no further mes- 

sages from a process it believes fault (a process may, for example, disconnect its incoming channel). Lastly, 

a process's belief in another 's faultiness is gossiped (or piggy-backed) to other processes in future commu- 

nication, whereupon the recipient adopts the sender's belief 1. The gossip and disconnect properties may 

isolate suspected faulty processes among those with mutual non-failure beliefs; that  is, among all processes 

that do not believe each other faulty. Notice that  one process's beliefs affect another 's behaviour only if the 

first sends a message to the second and only if the second does not believe the first faulty. 

Denote by Proc a finite set of process identifiers, {Pl , . . .  ,Pn}. A history for process p, hp, is a sequence 

of events executed by p, and must begin with the distinct event starlp. Processes may send and receive 

messages, and do internal computation. The event sendp(q,m) denotes p sending message m to q, and 

recva(P,m) denotes q's receipt of m from p. The distinct event quitp models the crash failure of process p, 

after which only other quitp are permitted. Process p executes faultyp(q) upon suspecting q to be faulty or 

receiving a message gossiping q's faultiness. 

A cut is an n-tuple of process histories, one for each process in Proc, c = (hpl, hp2 , . . . ,  hp.). We assume 

familiarity with Lamport ' s  happens-before relation and consistent cuts[lO]. 
The indexical set Up(c) is the subset of Proc whose members are functional along consistent cut c. 

3 T h e  Logic 

Our specification language is a blend of (branching time) tense and epistemic [9] [5] logics. The basic semantic 

entities of this logic are consistent cuts; i.e. logical formulas are evaluated along consistent cuts, as in [15] 

and [13]. Informally, two cuts are p-equivalent exactly when the local state o f p  in each cut is identical; they 

are causally related if one is apref ix  of the other. The following modalities are used : 

* Kp¢ - "p knows ¢". Holds along c when ¢ holds along every p-equivalent cut. 

• DG¢ - "¢ is distributed knowledge among the group G". Holds along e when ¢ would be known to the 

members of G if they pooled their local knowledge at c. 

• 0 ¢  - "¢ is henceforth true". Holds along c when every cut containing c as a prefix satisfies ¢. 

• 43¢ - "¢ has always been true". Holds along c when every prefix of c satisfies ¢. 

The indistinguishability of failures from communication delays seems to warrant using the doxastic modal- 

ity [16] to refer to local failure beliefs. However, the Disconnect property results in a much stronger local 

interpretation than belief. In particular, once a process suspects another is faulty, it behaves as if it knows 

1 The re  is no h a r m  in a p rocess  be l i ev ing  i t se l f  f au l ty  t h r o u g h  gossip.  
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that process has crashed. Whereas the standard doxastic interpretation would give equal weight to belief 

in faultiness and belief in non-faultiness, our model favors one before the event faultyp(q) and the other 

after. By closing its incoming channel from a suspected-faulty process, a process behaves as if the system 

were synchronous; as if it knew that  a suspected process could not send further messages. In fact, we have 

modeled fail-stop process failures. 

We express this ambiguity with two formulas, one of which is local to the suspecting process while the 

other is local to no process. Formula ¢ is local to process p ifp always knows whether it is true [5]; KpeVKp~¢ 

holds along all consistent cuts. In this way, the standard knowledge operator models exactly the behavior 

process p exhibits upon executing faultyp(q). Throughout  this abstract, the statement "p believes (or knows) 

q is faulty" should be taken as an artifact of our model's behavioral requirements, not literally. When ¢ 

is local to p and p G G, then distributed knowledge of ¢ among G is equivalent to p's local knowledge : 

Da¢ ~ Kp¢. Also note that  local formulas depend upon their agent's functional status for definition; a 

process can only know things if it is functioning. 

Chandra and Toueg impart  a pure doxastic interpretation to local failure beliefs [4]. In their work, despite 

belief in a process's faultiness, all of its messages must be delivered, as must all messages to it. The difference 

could also be termed one of optimism versus pessimism. 

4 The Group Membersh ip  Problem 

The general Group Membership Problem is concerned with propagating changes in a process group's compo- 

sition to each of its members. In many situations, a group functions correctly only when its members have 

identical local views of its composition. For example, in a token passing implementation of atomic broad- 

cast, processes' local views and a static, linear ordering on process identifiers determine which process each 

group member believes holds the token. Thus, an important  instance of GMP ensures that  each member 

of a group sees identical changes to the group's composition, and in the same order. Other pertinent issues 

include partitions, and join and leave behavior. This abstract is concerned with a single process group and 

the particular instance of GMP described in [14], hereafter Strict GMP. 

Let Membp(c) denote p's local view of the group along consistent cut c, and let Memb~ denote the x ~h 

instance of p's local view. The system view determined by S along c is defined to be : 

I 
~ s n up (c )  = 

Syss(c) = Membp(c) Vp, q E (S M Up(c)). 

(Membp(c) = Membq(c)) 
undefined otherwise 

Tha t  is, if no members of S are functional, the system view is empty; if all functional members have identical 

local views, the system view is any local view; and if the functional members '  local views disagree, the system 

view is undefined. 

In Strict GMP, every system execution must exhibit a maximal sequence of temporally unique (at most 

one system view exists along any cut) system views. Moreover every member of a system view must also 

be a member of the group determining it. Since Strict GMP requires a sequence of system views, integer 

instances are well-defined; let Sys * be the x th version of the system view. We assume a commonly-known, 

linear rank on the members of Sys * , in practice determined by length of membership. 
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The Appendix contains a skeleton of the solution to Strict GMP presented in [14]. This protocol (hereafter 

AFS for Asynchronous Fail-Stop) is a combination of two- and three-phase centralized commit  protocols ~. If  

mgr is not believed faulty for 'suitably long '3 a two-phase commit  protocol suffices. I f  mgr  is ever believed 

faulty, a three-phase reconflguration protocol is run. A process initiates reconfiguration if it believes every 

process of higher rank than itself is faulty. In the first phase, the initiator collects local view information 

from the outer processes, and determines an update  that  would re-establish local view consistency. In the 

second phase, it proposes this update  and awaits responses, broadcasting a commit  in the third phase. 

AFS is a full-information protocol; all relevant state information is sent with each protocol message. In 

Strict GMP, relevant information are local beliefs about  failures, and during reconfiguration, a process's local 

view and the value of a pending commit  (if it exists). Outer processes can infer an init iator 's  respondents 

from its failure beliefs. 

For the rest of this abstract ,  the phrase "submission for version x" refers to either the value mgr invites 

processes to commit  for version x, or to a reconfigurer's proposal for version z. 

4 . 1  S t r i c t  G M P  D e f i n i t i o n s  

Strict GMP, as a commit  protocol, requires functional processes in a given system view to vote on a proposed 

update  to their local views, and commit  the update  when particular conditions are met .  

Let V be a set of values, one of which the processes in the (z - 1) ' t  system view must  commit  to install 

the z *h system view : V C ({remove, add} × Proc). Before commit t ing a given update,  a process may vole 

for more than one update  value, due to conflicting proposals from competing coordinators. As in Atomic 

Commit ,  in no execution are votes for any version pre-determined. The notat ion v,  refers to  a particular 

value, v, and version of the system view for which v is submit ted and/or  commit ted.  The same value may 

be submit ted for different versions. 

The following are formulas, events, and notation used to phrase Strict G M P  as a commit  problem. 

Throughout  this abstract ,  events are written in italics, while formulas are in SMALL CAPS font. 

• vowEp(v,)  holds along consistent cut c if votep(v,) is the most-recent voting event p, with local view 

Mernb~- 1, executed. 

• COMMITp(V~) holds if p executed the commit  event commitp(v~,) to form its x th local view. 

• FAULTYto(q ) holds if p has executed faultyp(q). We omit  the subscript when we are not concerned with 

which process believes q faulty. 

The formulas FAULTYp (q), VOWEp(Vx), and COMMITp(Vx) are local to p; FAULTYp (q) and COMMITp(Vx) 

are stable. 

• DOWN(q) holds if q has crashed. The distinction between DOWN(q) and FAULTYp (q) is that  DOWN(q) 

is never local to any process : D~IfpDOWN(q) A Q-~Kp-~DOWN(q). 

• Maj(S) is the set of all major i ty  subsets of S. 

2 A communication phase consists of a process broadcasting a message to a group of processes, and collecting their responses 
to it. In truth, this protocol is one-and-one-half (broadcast, collection, broadcast), and two-and-one-half phase protocols, but 
this is awkward. 

3for the duration of an update it initiates 
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* STABLEVOTEs(Vx) holds when S is a (non-null) subset of Sys ~-1 , each process of which has most-  

recently voted for v~ and will not vote for another v~. Moreover, every process not in S is (distributedly) 

known faulty by the group S : 

STABLEVOTEs ( Vx ) d_ef 

A (voTE (v )^ A ^ A  sFA,L  (q) 
pES v'~v qffS 

The set S must  have at least one functioning process for STABLEVOTEs (Vx) to hold. We use  STABLEVOTE(Vx) 

when we are not concerned with the particular set S, according to which vx is stable. 

4 . 2  S t r i c t  G M P  S p e c i f i c a t i o n  

A protocol is a solution for Strict G M P  if every execution of it satisfies 4 . 

V a l i d i t y  I f p  commits  vx, p is in a subset of Sys ~-1 according to which v is stable for x : 

S c Sys ~- 1 

s for  v t U n i q u e n e s s  I f p  commits  vx, no other process, q, ever commits  v~, ~ v : 

GOMMITp(Vx) ~ A A O~GOMMITq(Vlx) 
v'~v q6Proc 

T o t a l i t y  If  p commits  v~, then for every other process, q, either 1) q is not in Sys x or 2) q eventually 

commits  v~ or 3) q eventually fails : 

COMMITp(v~) ::::~ ~o ((q~SysX)V(OCOMMITq(Vx))V(~DOWN(q)) ) 
qE C 

I t  is easy to see [14] that  Uniqueness cannot be guaranteed without additional restrictions on stability. 

D e f i n i t i o n  Value vx is committably stable (c-stable) if and only if v~ is stable with respect to a major i ty  

subset ofSysX-1 : SS E Maj(Sys x-1 ).(SThBLEVOTEs(V~)). The formula C-SThBLE(vx)holds exactly when 

vx is c-stable. 

Uniqueness and Validity then combine to restate the latter as 

ve  Maj(Sys ~-1 ) 

4In fact, Strict GMP has other requirements (e.g. constraining permissible votes, and specifying initial conditions) but these 

are not relevant to the current work. 
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5 Optimality 

These analyses use two notions of optimality : a commit protocol is knowledge-minimal if processes commit 

a value as soon as they know it is safe to do so; it is message-optimal if it is impossible to commit a value 

safely in fewer messages. In this section, we show that  parts of the A F S  protocol are knowledge-minimal, 

and how the knowledge-based formulation of Strict GMP led to optimizations in the other three parts. We 

also derive a lower bound on the number of messages required to solve Strict GMP, and compare A F S  with 

a message-optimal protocol. While we believe the optimizations to be at least knowledge-minimal, different 

failure scenarios make analysis of whether they are optimal in either sense beyond the scope of this work. 

For these purposes, the most important  aspect of correctness (proven in [14]) is that  at most one value 

attains c-stability for any given version, from which it follows that  a process may safely commit  v= as soons 

as vx becomes c-stable. On the other hand, a simple derivation from Validity shows that  every solution to 

Strict GMP necessarily satisfies COMMITp(V=) ~ I~pC-STABLE(V=), SO the 'earliest' a process can commit 

v= is as soon as it knows v= is c-stable : I(pC-STABLE(Vx) ~ COMMITp(Vx). We call such a commit protocol 

a 1K-commit protocol since a process can commit with one 'level' of knowledge.  

Denote by M-sub(re) mgr's  Phase I invitation message, and by M-eora(vx) its Phase II commit message. 

Let R - i n t ( x )  denote the reconfigurer's Phase I interrogation query when in local version x - 1, R-sub(v=) 

its Phase II proposal, and R-cora(v=) its Phase III commit message. We use eom(vx) be any commit  message 

(H-cora(v=) or R-com(v=)), and sub(v=) for any submit message. 

D e f i n i t i o n  Let p~ send message m, and let ack(m) denote a message sent by a recipient of m, back to p~ 

acknowledging receipt of m. 

* Recipients(p',m)d= ef {plrecvp(p' ,m)} *AcksSent(p ' ,m) d--el {plsendp(p' ,ack(m))} 

. Ack Rcvd(p',m)% {p I 
At all times, process failures and message asynchrony render AcksRcvd(p',m) C AcksSent(p',m) C 

Recipients(p ~, m), for any p and m. This is significant in the next definition, and in the propositions that  

follow. To describe the most general, observable system state from which it can be inferred that a value is 

c-stable, we define a 'successful initiator'  to be one whose submission can possibly be committed. 

D e f i n i t i o n  Process p' is successful for v= if and only if a majori ty subset of Sys x-1 acknowledge p~'s 

submission: AcksSent(p', sub(v=)) E Maj(Sys =-1 ). ,,, 

This definition leaves open whether p~ actually received any of the acknowledgements sent to it. While 

this is obviously relevant in determining whether p' is able to commit the update, in the absence of concrete 

evidence, it is impossible for a subsequent reconfigurer to know whether p' succeeded in committing the 

update anywhere. However, Uniqueness and Totality require a reconfigurer to assume the update was 

committed ('invisibly' to it) if it determines that p' could possibly have issued the commit  message ([14] 

covers this issue in more detail). 

Correctness of the AFS protocol implies : 

Fac t  5.1 In AFS if p I is successful for vx, no value unequal to v is thereafter submiffed for version x. 

Fac t  5.2 In A F S  if p' is successful for v=, then v= is c-stable. 
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Fact  5.3 In AFS if VOTEp(V,) holds for a majority of Sys ̀-1 along any consistent cut, then C-STABLE(V,) 

holds along that cut:  (VGeMaj(Sys ,_ l ) (Av¢G VOTEp(v=)) ) ~ C-STABLE(V,). 

5.1  K n o w i n g  S t a b i l i t y  

To understand when a process executing AFS knows a value is c-stable, we analyze the protocol's communi- 

cation phases. We show two communication phases are necessary when the initiator is mgr.  In the interest 

of brevity, we restrict this analysis to instances of AFS when a given process is either the first mgr,  or has 

been mgr for at least one completed update of the system view; the issues arising in the transition of a 

process from reconfiguration initiator to mgr are too complex for discussion here. 

We also show that  in three of the four possible global states that  may exist at the start  of reconfiguration 

(i.e. the degree and type of local view divergence), processes learn c-stability earlier than when they commit 

in AFS , allowing us, in two cases, to eliminate a full phase of communication, and to preclude a third entirely. 

We show it is impossible to improve the fourth. 

D e f i n i t i o n  Let IsMGR(p', x) hold if a majority of Sys =-  1 believe p' is the highest-ranked, non-faulty process. 

Then version x has a clean starting point if z = 1, or IsMGrt(p', x -- 1) held throughout the formation of 

Sys ' -  1 .~ 

Fact  5.4 In AFS if x has a clean starting point, and if mgr submits v=, then no process in $ys =-1 has 

previously voted for v=. 

P r o p o s i t i o n  5.1 In AFS Kmgr C-STABLE(v.) ~ AcksRcvd(mgr, M-sub(v,)) E Maj(Sys x-1 ). 

P r o o f  "=.~" We first show Kmgr VOTEp(V.) ~ p E AcksRcvd(mgr , M-sub(v=)). 

Building on [5], Mazer [12] showed that  if p learns Cq, a formula local to q, and if processes a) are 

asynchronous, or b) can experience crash failures and Cq can only be made true by q, then p must receive 

a message from, or indirectly from, q implying Cq. VOTEq(V=) is such a formula, and our system is both 

asynchronous and subject to process failures. 

Since x has a clean starting point, no process in Sys "-1 had voted for v= before receiving M-sub(v,) 

(Fact 5.4). Inspecting AFS shows that  a process votes after receiving M-sub(v=) and before responding to it, 

and since VOWEp(v=) has not held previously, it holds for the first time in the execution immediately before 

p acknowledges M-sub(v,). mgrcan infer VOTER(v= ) upon receipt of p's response to M-sub(v,). Finally, 

outer processes do not send messages to one another 5, so no other process can have learned VOTEp(V.) 
independently. As a result, mgrcannot have learned VOTEp(vz) from a process other than p. The only 

message p sends is ack(M-sub(v=)) so Kmgr VOTEr(v=) :::*. p E AcksRcvd(mgr, H-sub(v=)). 

Let VOTEG(v=) denote ApeG VOTEr(v=). Then, 

g m g r  C-STABLE(v,) ~ V Kmgr C-STABLEG(v,) ~ Kmgr  VOTEG(Ux) 

G~Maj(Sys " - 1  ) 

C _C AcksRcvd(mgr, H - s u b ( v . ) )  ~ AcksRcvd(mgr, M-sub (v . ) )  E Maj(Sys ` - 1  ). 

"¢=" The composition of AcksRcvd(mgr, M-sub(v=)) is local to mgr.  Since AcksRcvd(mgr, M-sub(v=)) C 

AcksSent(mgr, M-sub(v=)), mgr knows it is successful for v,. Using Fact 5.2, Kmgr C-STABLE(v.). • 

5except during reconfiguration, in which case mgr has been isolated 
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Proposition 5.1 shows that  whenever x has a clean starting point m g r  cannot know c-stability of any 

value until after collecting responses. We now use this to show that  AFS , during a m g r - i n i t i a t e d  update 

begun from a clean starting point, is knowledge-minimal. 

Propos i t ion  5.2 ( T w o - P h a s e  Necess i ty )  In AFS i f  X has a clean s tar t ing point,  then a process commi t s  

vx during a m g r - i n i t i a t e d  update as soon as it knows C-STABLE(vx) : 

1. s endp (mgr  , ack (M-sub (v z )  ) ) ~ "[~]~KpC-STABLE(Vx ) 

e. recvp(mgr,M-¢om(v )) KpC-STABLZ(v ) 

P r o o f  Since x has a clean starting point, no process voted for v, before receiving H-sub(v~). Propo- 

sition 5.1 and inspecting the protocol show that  mgrdoes not know C-STABLE(Vx) until after it has sent 

all M-sub(vz) messages; therefore, M-sub(v~) cannot have implied C-STABLE(Vz). Furthermore, neither p's 

internal voting event nor its acknowledgement add to its knowledge [5], establishing (1). Outer processes 

do not communicate amongst themselves so p cannot have learned C-STABLE(Vx) independently or from 

another outer process since receiving M-sub(re). In consequence, the earliest p can learn C-STABLE(Vx) 

is upon receipt of m g r ' s  second phase (commit) message. Since AFS is full-information, C-STABLE(vx) is 

propagated by M-com(v~). • 

5 .2  O p t i m i z a t i o n s  

This section presents optimizations made possible by a knowledge-theoretic analysis of the degree of incon- 

sistency that  may exist once m g r  is believed faulty. 

Fac t  5.5 Let r be a reconfiguration in i t ia tor  with local version x -  1. Then in AFS , when collecting interro- 

gation responses  exactly one o f  the fol lowing three scenarios is possible : a) r learns some process has local 

version x;  b) r learns some process has local version x - 2; c) all processes f rom  which r receives responses 

have local version x - 1. 

In the first instance, r learns C-STABLE(Vx) at the end of reconfiguration Phase I. To optimize AFS , r, 

instead of proposing vx and collecting responses, commits v, and propagates C-STABLE(Vx) to any process 

whose acknowledgement also indicated local version x -  1. This optimization saves approximately 2]Sys ~-1 I 

messages. Another optimization precludes case b),  for upon receiving R- in t (x) ,  a process with local version 

x - 2 learns C-STABLE(Vx_I). It can commit that update and respond to the reconfigurer with its new 

version. In c), if a majority of Sys ~-1 (among the interrogation respondents) also indicate having most- 

recently voted for the same value, r learns that  value is c-stable; as in the first optimization, reconfiguration 

Phase II is unnecessary. 

P r o p o s i t i o n  5.3 ( O p t i m i z a t i o n  1) I f  r is a reconfiguration in i t ia tor  with local version x - 1, and some 

process ' s response to R-in t (x)  indicates local version x,  then r learns C-STABLE(vz) upon receipt o f  a c k ( R - i n t (  x ) ) 

f rom  that process. 

P r o o f  Upon receipt of ack(R-int(x)) from any p with local version x, KrCOMMITp(Vx). Distributing 

Kr over implication in Validity gives /~rC-STABLE(Vx). • 
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Propos i t i on  5.4 (Opt imiza t ion  2) I f  r is a reconfiguration in i t ia tor  with local version x - 1, then any 

process, p, with local version x - 2 learns C-STABLE(v~_i) upon receipt o f a - i n t ( x  -- 1) f r o m  r. 

P r o o f  Similar to Proposition 5.3 • 

P ropos i t i on  5.5 (Opt imiza t ion  3) Let r be a reconfiguration in i t ia tor  with local version x - 1, and sup- 

pose every process in AcksRcvd(r, R-int(x)) indicates local version x - 1. I f  a ma jor i t y  o f  Sys x-1 (among 

AcksRcvd(r ,  R-int(x)))  also indicate having most-recent ly  voted f o r  some value, vx , then I£rC-STABLE(Vx). 

P r o o f  Follows from Fact 5.3. • 

The final proposition shows AFS is knowledge-minimal when all respondents to R-int(x)  report the same 

local version, but no majority subset has most-recently voted for the same value. 

P ropos i t i on  5.6 (Three -Phase  Necessi ty)  Let r be a reconfiguration in i t ia tor  with local version x - 1, 

and suppose every process in AcksRcvd(r, R-±nt(x)) indicates local version x - 1. I f  no ma jor i t y  subset o f  

Sys x-1 (among AcksRcvd(r, R-int(x)))  indicate they have most-recent ly  voted f o r  the same value, then f o r  

all v~ and p E AcksRcvd(r, R-int(x)), 

1. sendp(r,ack(R-sub(vx) ) ) ~ G~KpC-STABLE(Vz ) 

recvp(r,S-¢o (v )) KpC-STABLZ(V ) 

Proof Upon initiating reconfiguration, r does not know whether any value is c-stable for version x; it has 

not received ~I-com(x~) from the previous mgr, has not learned C-STASLE(v~) from a previous reconfigurer, 

and has not received messages from non-initiator processes. Its interrogation cannot imply C-STABLE(v~), 

and clearly p's response to r does not add to p's knowledge. 

Given that no majority of r's respondents have voted for the same value, r cannot distinguish at the 

end of Phase I which, if any, of the reported pending values may be c-stable; it may be able to envision 

scenarios in which each of the reported values are c-stable. Correctness of AFS only ensures that if a value 

and v~ are values r's respondents report pending, correctness is c-stable, r will propose that value; if v~ 
of AFS only guarantees send, . (p ,R-sub(v~))  =:¢, I~r~C-STABLE(Vtx), and implies nothing about whether v~ is 

c-stable. Thus, R-sub(v~) does not imply C-STABLE(vx) , and since outer processes have not sent messages 

amongst themselves, none can have learned c-stability (before receiving R-sub(vx)) independently. Again, 

neither p's vote nor its response add to its knowledge. 

As a side note, r choosing to propose v~ and an outer process receiving this proposal does not even 

guarantee v~ will become c-stable. This is due to possible failures in the second and third phases of reconfig- 

uration : r may fail before sending all the proposal messages, or a majority may fail before receiving and/or 

voting for the proposal, both of which result in vx not becoming c-stable. Moreover, both r and the outer 

processes can envision these scenarios. 

As in Proposition 5.2, r learns C-STABLE(Vx) if AcksRcvd(r, R-sub(xx)) is a majority subset of Sys ~-~ , 

and outer processes learn it upon receipt of r's commit message. • 

5 .3  M i n i m a l i t y  

We use Mazer's Message Chain Theorem [12] to determine the minimal number of messages required by any 

solution to Strict GMP. Similar work for different commit-style problems is in [6] and [11]. For simplicity, 

we assume no process has knowledge of another's votes. 
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= ÷ 1 w e  show th t,  ora given set S, at lo t 2 ( . s - 1 )  moss ges are necos ary for any Let 

member of S to learn c-stability of a value, and that any algorithm using fewer than (IS[ - 1) + 2(its - 1) 

messages is not Total.  

We have already shown that  a process can commit a value as soon as it knows it to be c-stable, and that 

any solution to Strict GMP is necessarily a 1K-commit protocol. Let G E Maj(S) and let C-STABLEG(Vx) 
hold. Then I~p,C-STABLE(Vx) if and only if 

A A A A 
pea pEG vl~v qEe 

Since VOTEp(Vx) is local to p, pl must receive (at least) one message for Kp,vOTSp(v~)  to hold, so at least 

Its - 1 messages are needed to satisfy the first conjunct. For the second conjunct, nothing in the specification 

of Strict GMP ensures pl that  p's vote for vx is stable. One solution is initial stability (each process votes 

for one and only one value), but then there are many initial configurations in which no majori ty concurs 

on a specific value 6. Alternatively, if we allow processes to vote for more than one value over time, p~ must 

somehow learn stability. It is clear that  processes cannot independently (i.e. without communicating) decide 

when to stabilize a vote, as this degenerates to initial stability. Therefore, the decision to stabilize a vote 

must be coordinated to ensure that a majori ty stabilize a particular value, and this requires at least Its - 1 

more messages, giving a total of 2(Its - 1) messages before p' can commit. 

There are two possible patterns of communication : 

• p' can passively collect votes until a single value has been voted for by a majority. At this point it 

sends a 'stabilize' message to each process in the majority subset. Note that  p' cannot commit here 

since it does not yet know whether each outer process has stabilized 7. This requires an additional 

Its - 1 messages, totaling 3(Its - 1) messages, before p' can commit. 

• p' can choose a value, and actively propagate it to a majori ty subset. Upon receipt of the value, each 

process votes and stabilizes, then sends confirmation of its vote back to p'. This approach requires a 

minimum of 2(Its - 1) messages for p' to learn c-stability. 

Finally, Totali ty requires that  once p' commits a value, every functional process must also commit that  

value. If every functional process undertakes to learn c-stability in the fashion outlined above, a minimum 

of (IS] - f )  x 2(Its - 1) total messages are needed (where f is the number of crashed processes). On the 

other hand, if p*, having learned c-stability ' the hard way', propagates this fact, only an additional I S I -  1 

messages are needed s, giving a minimal total of (ISI - 1) + 2(Its - 1) messages. 

In AFS , installing version x from a clean starting point and assuming m g r  is not thought faulty, uses 

at most 3(ISys ~-1 I -  1) - f messages. The extra messages (approximately ISys ~-z I -  f - 1) represent 

the tradeoff between compressing m g r ' s  faultiness determinations to one phase, and spacing them out over 

possibly ItSys~_l + 1 waiting periods. The worst case ' t ime'  occurs when p' chooses the worst sequence 

of processes from which to get responses : if, from the initial majori ty subset it chooses, p' receives only 

ItSysX-1 - 2 responses, then observes [ ]Sys: - I  ] 1 - 2  successive 'failures' before getting the last response. 

6This is not  t rue for IVI< 2. 

7A technicality now, but  impor tan t  in practice when reconfiguration may be ongoing. 

8The lack of .f here arises from the impossibility of p' knowing whether another  process is t ruly crashed. 
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6 Conc lus ion  

This abstract presented a knowledge-based formulation of Strict GMP and an analysis of a particular so- 

lution to it. The knowledge4heoretic approach easily identified three ways to optimize AFS and proved the 

remaining cases knowledge-minimal. We also quantified the minimal number of messages needed to solve 

Strict GMP under certain assumptions, outlined a minimal algorithm, and compared it with AFS . Given 

that AFS actually implements a failure detection service for asynchronous systems, its speed and correctness 

are crucial. The simplicity with which optimizations were identified demonstrates the practical utility of 

knowledge-based reasoning. 

In fact, much of distributed computing can be phrased in terms of commit-style problems. Tile goals 

and benefits of distribution are increased availability and performance. This involves some form of fork-join; 

process groups arise at the fork (for example, when replicating for fault-tolerance), and engage in some level 

of agreement at the join. Unfortunately, if knowledge-based reasoning is to gain acceptance among systems 

programmers, we must demonstrate, clearly and simply, its utility. Epistemic logic and its applications must 

be 'user-friendly' and comprehensible, and it should be clear that there are tangible benefits (e.g. correctness 

guarantees, optimality) to this approach to programming. 
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A p p e n d i x -  T h e  AFS S o l u t i o n  

This is a scaled-down version of the AFS solution. It 

focuses only on the Communication structure, and 

vote and commit events, while ignoring failure be- 

liefs and events. Let Bcastp(G, m) denote the set of 

events Vq e G(send,(q,m)). This sequence of events 

is executed atomically but is not failure-atomic. 

Task : Update Algori thm- mgr 
/*  Local version z - 1 */ 

B e g i n  : 

choose an update value v~ ; 

Bcastmgr ( M e m b ~ , ~  r , M-sub(v~)); 

votemgr (vx ); 
x--1  Vp E Membmgr do 

rccvmgr (p,aek(S-sub(vz))) or  timeou£(p); 
/* End of Response Collection */ 

i f  AcksSent(mgr,M-sub(v~)) E Maj(Sys ~-1 ) 

t h e n  

Bcastmgr (Membmgr ~l-com(v~)); 

commitmgr (v~ ); 
E n d .  

Task : Update Algori thm- Outer Process, p 

B e g i n  : 

~ecvp(mg~ ,n-sub(.e)); 
vote,(v~ ); 
send, (mgr ,ack(H-sub(vx))); 

~ecvAmg~ ,n-¢o.(v~)); 
commitv(v~ ); 

End .  

Task : Reconfiguration - Initiator, r 

/* Local version x -  1 */ 

Beg in  : 

Bcast~( Memb~ -1 , R- in t  (x)); 

Vp G Membr x-1 do  

recvr(p,aek(R-int(x))) or  timeoul(p); 
i f  AcksSent(r ,R-int(x)) E Maj(Sys z-1 ) 

t h e n  

Determine an update proposal, vz ; 

Bcastr( Mernbr ~-1 , R-sub(vz)); 
vo~e~(v~ ); 
Vp E Mernb~ -1 do 

recvr(p,aek(R-sub(v~ ) ) ) or  timeoul(p); 
i f  AcksSent(r,R-sub(vx)) G Maj(Sys z-1 ) 

t h e n  

Bcaslr (Membr z- 1, R-¢om(vr)); 

commitr(vz ); 

Begin Update Algorithm as mgr; 
E n d .  

Task : Reconfiguration - Outer Process, p 

Beg in  : 

recvA~,R-i~t(~)); 
send, (r,local state information) ; 

reevA~,R-snb(v~)); 
vote,(v~ ); 
send, (~,a~k(R-sub(~))); 
~ecvA~,R-¢om(v~)); 
commitp(vz ); 

Begin Update Algorithm with r as new mgr; 
End .  


