
KOLMOGOROV'S LOGIC OF PROBLEMS AND A PROVABILITY 
I N T E R P R E T A T I O N  OF I N T U I T I O N I S T I C  LOGIC 

S . A r t e m o v  
S t e k l o v  M a t h e m a t i c a l  I n s t i t u t e ,  
V a v i l o v  s t r . , 4 2 ,  Moscow GSP-1,  

1.17966, USSR. 

ABSTRACT 

In 1932 A.N.Kolmogorov suggested an interpretation of 
intui tlonls tic logic Int. as a "logic of problems". Then 
K.G~del in 1933 offered a "provability" understanding of 
problems, thus, providing an abstract "provability" 
interpretation for Int via a modal logic $4. Later papers by 
J.C.C.McKinsey & A.Tarski, A.Grzegorczyk, R.Solovay, 
A.V.Kuznet sov & A.Yu.Muravit skii, R.Goldblat t, G.Boolos imply 
that this provabllity interpretation of Int is complete if 
one decodes G~del modality ~ for an "abstract provability" in 
t h e  f o l l o w i n g  way:  oQ =Q^Pr[Q]~ w h e r e  P~[Q] i s  t h e  s t a n d a r d  
p r o v a b i l i t y  p r e d i c a t e  f o r  P e a n o  a r i t h m e t i c .  The  p a p e r  s h o w s  
t h a t  t h e  d e f i n i t i o n  o f  oQ a s  Q ^ P r [ Q ]  i s  (in a c e r t a i n  s e n s e )  
t h e  o n l y  p o s s i b l e  one .  The U n i f o r m  C o m p l e t e n e s s  T h e o r e m  f o r  
p r o v a b l l i t y  l o g i c s  i s  e x t e n d e d  t o  I n t  and  o t h e r  l o g i c s  h a v i n g  
G/Sdelian provability interpretation. The first order logics 
having provability interpretation are considered. 

t I N T R O D U C T I O N  

A.N.Kolmogorov in [Kol] suggested an informal interpretation 
of sentences of Intuitionistic logic Int as statements about 
the possibility of solving certain general problems; 
propositional variables were supposed to denote "problems", 
logical connectives were given a natural interpretation as 
operators over "problems": a formula A^B denotes a problem 
"to solve both A and B", a formula AvB denotes "to solve 
either A or B", an implication A --,B is interpreted as a 
problem "to reduce a solution of B to any solution of A"~ -~A 
is A--~± that means a problem "to demonstrate an unsolvability 
of A". Kolmogorov hadn't given a precise definition of 
"problems", just appealing to the common sense of a working 
mathematician but had conjectured that his interpretation of 
Int was complete. 

In [G~d] K.G~Sdel offered an interpretation of Int. close 
to that in [Kol], where intuitionistic propositions were 
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treated as assertions about provability. More precisely, in 
[GOd] there was defined a translation t r ( F )  o f  an 
Intultionis tic formula, F obtained by prefixing a new 
operator o that stands for an abstract "provability" to each 
subformula of F. 

We call the logical language with the modality Q the 
[]-language and a modal formula in o-language a D-formula. In 
[G~d] some properties of [] were accepted as axioms and rules 
of a modal logic $4. A possible axiom system for $4 includes 

all the tautologies (in a propositional []-language), 
• P ~ ( P  ---~Q) ---~[]Q, []P --.~P, 
• P  --~[]•P 

for all sentences P,Q. The rules of inference of $4 are modus 
ponens PpP-~Qt-O and necessitation PI--~P. 

We look at logics as sets of formulae and therefore for 
each logic L and each formula F, L~-F ~-~ FeL. 

Theorem i.(K.G~Sdel [G~d],J.C.C.McKinsey & A.Tarski [McK&Tar]) 
For each propositional formula F 

Felnt : : tr(F)eS4. (*) 

Later in [Grz] A.Grzegorczyk introduced a new modal logic Grz 
(a proper extension of $4): 

G r z = S 4  +o (o (A -~o A) -~ A) -~ A 

and showed that for G~z the property ( ~ )  was also valid. 

Theorem 2. (A.Grzegorczyk [Grz]) For 
o-formula F 

Feint ~ L T . ( F ) ~ G r . z .  

each propositional 

2 T H E  A R I T H M E T I C A L  P R O V A B I L I T Y  P R E D I C A T E  A S  A M O D A L I T Y  

In [G~d] K.G~del considered also another interpretation of a 
modality as an arithmetical provability predicate Pr(x); we 
denote this modal operator by A, A-language is the logical 
language with A; a A-formula is a formula in &-language. A 
complete axiomatization of A was given in [Sol] where 
R.Solovay introduced a decidable propositional A-logic S, 
that describes all valid laws of provability A, and its 
sublogic OL, that stands for all laws of provability A, which 
can be demonstrated by means of Peano Arithmetic PA. 

The logic GL can be axiomatized by the axioms: 
tautologies (in a &-language), AP~(P --~Q) -~AQ, 
A ( A P  - P P )  --~AP, 

for all sentences P , Q  and rules modus ponens, necessitation. 
Logic S can be defined as GL+AP -~P but without a 
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necessitation rule. 
A realization is a function that assigns to each 

sentence letter a sentence of the language of PA. The 
translation fA of a propositional A-formula A under a 

realization f is defined inductively: f±=±, fp--f(p) (for each 
sentence letter p), f(A -+B)=fA -=+fB, KAA=Pr[fA]. We have taken 
the propositional constant ± (falsity) to be among the 
primitive logical symbols of PA; we understand Pr[F] as the 
result of substituting the numeral for the G~del number of F 
for the free variable x in PrCx), and therefore the 
translation of any modal formula under any realization is a 
sentence of the language of PA. 

The following theorem shows that the logic S is exactly 
the collection of all valid principles of modal logic of 
provability A and that the logic OL is the set of those 
principles of this logic which are provable in PA. 

Theopem 3. (R.Solovay [Sol]) For each A-formula Q 
Q~S ~=~ fQ is true in the standard model of PA 

for each realization f, 
Q~GIL = : for each realization f PA~=fQ. 

The theorem implies also that 

OL~-Q ~ S~-AQ. 

Several papers independently give a uniform version of 
the second part of the Solovay Completeness Theorem. 

Theorem 4. (F.Montagna [Mon79], S.Artemov 
[Vis81], G.Boolos [Boo82]) There exists 
such that for each A-formula Q 

[Art79], A.Visser 
a realization f 

Q~"OL ¢,~ PAI, , fQ.  

The first part of the Solovay Theorem does not admit 
uniformization: for each realization f for a propositional 
variable p either fp or =~fp is true in the standard model of 
arithmetic, but neither p, nor -~p belongs to the logic S. 

In [Ar t79],[Ar t 80],[Vis 84],[At t86a] a general notion of 
a logic of formal provability was developed. Let a(t) be a 
r.e. formula that binumerates some axiom system of an 
extension of PA (i.e. a theory in the language of PA 
containing PA). Following [Fef], we can call such a formula 
act) a numeration. We denote by lal the set of axioms that is 
numerically expressed by the formula a 

IaI~FIF is an arithmetic sentence and sErF1) is true) 

and by II~II the extension o f  PA determined by the set of 
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axioms J~I- Let Pr (x) signify a standard arithmetical 

formula of provability based on ~ as a formula for G~del 
numbers of axioms ([Fef]). For each numeration ~ and each 
realization f we set f (p)ffp for each propositional letter 

p. Let f commutes with the Boolean connectives and 

f ( A Q ) f P r  [ f  Q]. 
Ot Ot O( 

L e t  U be  a t h e o r y  and  ~ a n u m e r a t i o n .  We d e f i n e  

L ( U ) = ( Q [ Q  i s  a A - f o r m u l a  and  Ut - f  Q f o r  e a c h  r e a l i z a t i o n  ~ ) .  
~( Ot 

The moda l  l o g i c s  L ( U )  d e s c r i b e  t h e  l a w s  o f  t h e  p r o v a b i l i t y  

P r  t h a t  c a n  be j u s t i f i e d  by m e a n s  o f  t h e  t h e o r y  U. 

We say that a logic I is logic of formal provability if 
IfL (U) for some numeration ~ and extension of arithmetic U. 

Obviously, GL is the least logic of formal provability. 
the Solovay Theorem provides another example of such a logic: 
S=L (TA) where II~ II=PA and TA is the set of all true 

Ot 

arithmetic sentences. 
There exists continually many logics of provability 

[Art79], [Art80]. A Classification Theorem for logics of 
provability was accomplished by L.Beklemishev in [Bek]. 

3 A D E F I N I T I O N  F O R  T H E  M O D A L I T Y  O F  I N T U I T I V E  P R O V A B I L I T Y  

In [Kuz&Mur 77], [Gol], [Kuz&Mur 86], [BooS0], [Art86b], 
[Boo79] and other papers there was considered a translation 
of DA as A^AA, that provides an arithmetical provability 
interpretation of D-language, therefore, Int.-language. It 
turns out that logics Int and GPz are complete under this 

interpretation. More precisely, let B A denote the decoding of 
DP as P^AP in all subformulas DP of a formula B. 

Theorem S. i.(A.Grzegorczyk [Grz]) For an Int-formula B 

Int~B ~=~ G r z ~ t r ( B ) .  

li.(A. V.Kuzne t s o v & A.Yu.Mur a vl t skii 
R.Goldblatt [Gol])For a D-formula B 

Gr~z~-B ¢ > G L i B  A, 

[Kuz&Mur 77 ], 86 ]; 

iii.(G.Boolos [Boo80]) For a o-formula B 

G r z i - B  <--~ St-B A. 
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Are there any reasons for adopting the definition 
oP:=P^AP? The modality [] doesn't have an explicit 
mathematical model; it had been introduced as a modality for 
an intuitive notion of mathematical provability. On the 
contrary the modality & has an exact mathematical definition 
as an operator of formal provability Pr~.) on the set of 
arithmetical sentences. Thus there is no way to prove that 
oP=P^&P; one can only hope to find some arguments in order to 

declare a 

Thesis: oP~-P^AP 
(**) 

(like the Church Thesis for computable functions). G~del 
himself in [GOd] tried the obvious idea to define oQ as &Q 
but noticed that this definition led to a contradiction 
between his axioms and rules for o and the already known 
G~del Second Incompleteness Theorem. Can one nevertheless 
give a reasonable definition of [] via 4? The most optimistic 
expectations are 

to find a &-formula BqCp) which satisfies known 
properties of op (first of all axioms and rules of $4) 
and such that for each other &-formula C~p) with these 
properties 

GLF-B(p) 4--,C(p). 

In this case we have the right to declare a definition 
oQ:=B(p) as a Thesis. It turns out that this situation holds 
with p^,~xp as B(p). The main ideas of the proof of the 
following theorem were taken from [Kuz&Mur86]. 

Theorem 6. For a given A-formula CCp) if 
I. all axioms and rules of $4 for C¢~p) as op are 

arithmetically valid (derivable in S) and 
2.GLt--CCp) -+•p (this principle says that any "real" 

mathematical proof can be finitely transformed into a 
formal proof) 

then 
GLt--C(p) , - , . (p^Ap).  

P~oof. Let T denotes the propositional constant "truth" so 
T~Int,S4,Grz,GL,S. Obviously, S4~-oT and by the conditions of 
Theorem 6 

1) S~-C¢~T ), 
2) Si--C(C(p) -+p) (because S41-[]¢~op -+p)), 
3) for each &-formula F that contains modality symbols 

only in combinations of a type C4C.) 

S~-F ~ St--CCF), 

(because of the necessitation rule for $4: s41-Q ~ s41-oQ), 
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4) GL~-C(p)--~Ap ( c o n d i t i o n  2. of  t h e  t h e o r e m ) .  
We wil l  show t h a t  

GL~--C(p) q-+(p^Ap) 

and thus this formula is 
provability. According to 2) 

deducible in all logics of formal 

SI-C(C ( p )  --+p), 

thus (GL_~S, condition 2. of the theorem) 

and 
OLI-&(C(p) --~p) 

GLI--C(p) --i,p. 

Together with 4) this gives 

OLI-C(p) -+p^Ap. 

Lemma. For each A-formula D(p) 

OLl-(p,,,Ap) --~(D(p) 4--.IR, D(T ) ) .  

The proof is an induction on the complexity of D. The basis 
step and induction steps for Boolean connectives are trivial. 
Let D(p) be ~E(p). By the induction hypothesis 

OLl- (p^Ap)  --D(E(p) 4--~E(T ) ) .  

The necessitation rule for OL and the commutativity of A with 
-+ and ^ give 

G L I - ( A p ~ A p )  --+(AE(p) ++AlE(T)). 

Together with GL~Ap-+A^p this implies 

GLl-(p, , ,~p) --~,(D(p) +-w.D(T ) ) .  

By 2) SI-C(T) and according to 3),4), SI-C(C(T)), St-AC(p) 
and GL~-C(p). Because of the lemma we have 

OLl- (p^Ap)  - - ,C(p) ,  whence  OLi-C(p)  ~-~(p,,,~,p). 

Remark. Without condition 2. of the theorem we lose the 
uniqueness of the definition (**): C(p)~p also fits. 

Below we assume the Thesis (**). Theorems 3 and 5 may 
now be considered as an affirmation of Kolmogorov's 
conjecture on the Completeness of Int with respect to his 
problem's semantics where one understands a problem as a 
problem to prove and a provabllity operator o(.) as (.)~(.). 

Since the Thesis provides a provability interpretation 
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for the Int-language we can extend the notion of provability 
logics to this language. We use the notation .Pint for the 
lattice of all logics containing Int, ~Grz for the lattice of 
all extensions of Grz, and ~GL for the lattice of extensions 
of GL. 

Let us consider a mapping p ([Mak&Ryb]) from ~GPz to 
.Tint which is determined by the G~del translation t.r: for 
each logic m from ~G~z we put 

p(m)=(F[F is an Int-formula and nz-tr(F)). 

We can also consider a mapping ~ ([Kuz&Mur86]) from .~GL 
to ~Grz: for each logic m~_.~GL, we set 

~(m)g,(F[F is a o-formula and m~-FA}. 

We say that a logic I in an Int.-language has a 
provability interpretation iff there exists a numeration 
and an extension of the arithmetic U such that 

l=pop oL (U) .  

In this situation the logic I describes those laws of the 
provability Pr that can be expressed on the Int.-language and 

justified by means of the theory U. 
By Theorems 3 and 5 the logic Int has a provability 

interpretation and Int is the least such logic in this 
language. There are continually many logics extending Int. in 
the language of Int. Which of them have a provability 
interpretation? 

The following theorem provides a Classification of all 
logics in Int.-language that have a provability 
interpretation. We denote by LPn, n~_co, a logic Int+Qn, where 

QO =±, Qn+t=Pn+tV(Pn+t -~Qn ), 
and LP =Int,. Obviously 

Co 

LPo~LPi~-.~LP~Int 

In fact LPn, n~, are the smallest logics in finite slices s n 

by Hosoi-Ono and each of these logics is decidable. We note 
that LP 0 is inconsistent, LP i is the classical logic and the 

logics LPn, n_>i, have properties close to those of the 

classical one. 

Theorem 7. ([Art 86b]) Among logics in the language of Int. 
only 

LPo~JLPir-.LP - - In t  

have a provability interpretation. 
This theorem shows that classical propositional logic CI 



264 Session 7 

also has a provability interpretation. 

C o r o l l a r y .  The logic 

is classical iff 

l---po/~ oL ( U ) .  
o t  

U~PA+(F-÷Pr [FI[F is an arithmetical sentence) 

Thus, the classical logic Cl corresponds to those 
theories in which the completeness principle "all statements 
that are true are provable" for PA is derivable. This 
consideration shows a reasonable correspondence of formal 
results with intuition in classical propositional logic. 

4 U N I F O R M I Z A T I O N  T H E O R E M  

The following theorem extends the Uniform Arithmetical 
Completeness for GL (Theorem 4) to simultaneous 
unlformiza tion for GL,S,Grz,lnt and all LPn,n~o0. For 

simplicity we assume below that Ha[IfPA and thus Pr(x) 
signifies a standard provability formula for PA. In [Art79], 
[Art80] it was pointed out that the logic S; is arithmetically 
complete with respect to ant extension of PA by the Local 
Reflection Principle: 

P A ' f P A  +(Pr . [~]  -~b I ~ - - S t p A ) -  

M o r e o v e r  I f  S ~ ( ? n t h e n  o n e  c a n  c h o o s e  a r e a l i z a t i o n  f f o r  w h i c h  
PA'b-fO and  f Q ~ E ~ .  

A provability interpretation of logics LPn, n~o , assigns 

to each of these logics a theory PA+Prn[±], i.e. 

LP mr./moiL ( P A + P r n [ ± ] ) .  

Here PrO[~Iffi~, P r  n + t [ ~ I ~ P r . [ p r . n [ F I ] .  

Theorem 8. There exists a realization f such that 
for each A-formula B 

G L i B  ~ PAt - fB  and St-B ~ P A ' t - f B ,  

for each o-formula B 

Gpz~-B 

for each InC-formula B 

InLt -B  ¢ .~ 

4=4 .  P A t - f ( B A ) ,  

PA t- f ( [ t r  ( B ) ] A ) ,  

LP ~--B ." ~ P A ÷ p r n L d ~ - f ( I t r ( B ) l A ) .  
n 

P r o o f .  We p r o v e  a u n f o r m l z a t i o n  t h e o r e m  f o r  t h e  l o g i c  S f i r s t  
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and then show that this uniform realization also fits for all 
other logics mentioned in the Theorem. 

Lemma. There exists a realization f 
&-formula B 

such that for each 

Proof is based on an improved version of Montagna's method 
from [Mon79]. For a A-formula R(Po,..,pn) and any arithmetic 

formulae BO,...,B n let R(BO,...~JB n) denote fR with a 

realization f such that fpi=Bi, i=O,...,n. 

Let H[x,y,z,] mean that the following 3 conditions hold: 
1. x is the G~del number of an arithmetical formula B(t) 

with one free variable, say; 
2. y is the G6del number of a &-formula Q(po,...,pn ), 

which is not a theorem of S; 
3. z is the G6del number of a proof of Q(B(O),...,B(n)) 

in PA" and non of natural v<z is the G6del number of a proof 
in PA" of any R(B(O)p...,B(k)) with some R~S. 

Obviously H[x,y,z] is recursive. Let II(x,y,z) is its 
representation in PA. Usual properties of such 
representations give that if H[x,y,z,] then 

P A I - V x , y ( H ( k , x , y , )  4--~x=m,,,,y=n). 

Consider a recurslve procedure which for any &-formula R not 
deducible in S constructs a realization g such that Ti~,~;R. 

R 
For such R and g let Pi denote an arithmetical formula gPi" 

Let us also define a recursive function F(x,y) as follows: 
if x is a number of some formula R(Po~...,p n) not 

deducible in S and y_<n, then F(x,y)= Fp, R1 Y ; in all other 

cases F(x,y)=O. 
Let also the formula G(x,y,z) represent a function F(x,y) in 
PA. Then F(m,n)=k implies 

PAj-Vz(O(m,n,z)-~z=k). 

Let IJ(x,y) denote the arithmetical formula 

Vz,v (H (x  j,v,z)-~Vw(O (v ,y ,w) -~Tr  ( w ) ) ) ,  
s 

where TP2(x) is a standard formula defining truth 
0 

Z2-sentences of arithmetic, i.e. 

PAI-E 4--~T~2( ['El ) 

for all 
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N 
for each E~_E~. By the fixed-point lemma for PA one can get an 

arithmetic formula B(y) such /:hat 

PAI-B(y)  4-~Vv,z(H( rB1 ,vpz )_pVw(G(v ,y ,w) . ,T r .2 (w) ) ) .  

We can show now that B.(O),B(1),... is a desired Uniform 
realization for S and PA'. 

Suppose now that for some A-formula Q(p,...,p), S~Q and 
PA'I-Q(B(O)r..,B(n)). Let k be the least number which is a 
number of some derivation in PA" of an arithmetical formula 
R ( B ( 0 ) ~ . . , B ( m ) )  such  t h a t  I~R. Then H[ 1131, rR'l Jc] h o l d s ,  
t h e r e f o r e  

PA~-¥v,z(H(  r'Bq , v , z )  +- ,v=  r'R'l ~ ,z=k) .  

Thus for each i, O%i_<m, 

Therefore 

P A ~ B ( i )  ~-+Yv~z(v= ri~1 Az=k_,Yw(G(v~i~,w)_~T~2(w))) . 

PA~-B(i) ~-~Vw(O( rR1 ~ t ,w)_ ,T r2 (w) ) .  

As F ( r R l ~ i ) = r p i R q  we g e t  

PA~-Vw(G( I 'R3 , / , w )  ~ w =  rpiR1 ).  

Thus 

and 

So 

and 

PA~-B( i )  ~-.T~2( Fp~I ) 

R 
PA~-B( i )  +-~Pi " 

PA~R(B(O) , . . . ,B(m))  R R ,-~R(p O,.. . ,pm ) 

R R 
S ~ R ( P  0,-- . ,pm ) .  

R 
This contradicts the definition of Pi" 

The Lemma is thus proved. 

Let f be a uniform realization for S and PA'. We can 
show that f is a uniform realization for GL and PA. As we 
have already noticed S~-AQ implies GLi-Q. Thus PAi--fQ implies 
PA~-Pr[fQ] and so PA'~-Pr[fQ] i.e. PA%-f(AQ). The realization f 
is uniform for S and PA" and so Sv-aO; Therefore GL~-Q. 

The realization f is obviously uniform for Grz and PA: 
as we already noticed above Gr, z=~(GL). Thus 

Gr'zt-B ~ GL~-B A 4=~ PAi - f (B  A). 

Let us show now that f is also a uniform realization for 
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logics 
Here 

GL+An± (without necessitation) and 

AOF~F, An+IF~nF ". 

So PA+p~n[_tJl--fQ gives PA~prn[.t-I --,,fQ and 

realization f is uniform for GL and PA. 

GL+An±t-Q. 

According to [Art86b] and [Art88] 

LPnmPO~(GL+An~) 

and thus f is a uniform realization for LP 

LP t-B ~ GL+An±i-[tt~(B)] A 
n 

Theorem 8 is thus proved. 

theories PA+pz'n[-fl. 

PAl-f(An± --,Q). The 

Thus OL~AnJ. --,Q and 

and PA+pl-n[J.]: n 
PA+PP~J~-f([tv(B)lA).  

5 P R O V A B I L I T Y  I N T E R P R E T A T I O N  OF THE P R E D I C A T E  L A N G U A G E  

The C~del translation t.r can be easily extended to the first 
order language: for each predicate formula F let t.r(F) be a 
result of prefixing an operator o to each subformula of F. 

The notion of an arithmetical realization of A-language 
has also a natural extension to the predicate language 
([Mon84],[Ar t85], [Var]). We assume that the predicate 
A-language does not contain equality and function symbols. By 
a realization we mean now a mapping f that associates with 
every predicate formula an arithmetic formula with the same 
free variables and that commutes with the operation of 
substitution for free variables and with the Boolean 
connectives and the quantifiers- In addition, let 

fAR(xt,-.,Xn)=PP[fR(xt,...,Xn)]. 
Here, for any formula F of PA, Pr[F] is the formula of PA 
with the same free variables as F that expresses the 
PA-provability of the result of substituting for each 
variable free in F the numeral for the value of that 
variable. For the details of the construction of Pr[FI, the 
reader may consult [Boo79], p.42. 

Thus each predicate A-formula can be thought of as a 
"provability law", where the predicate letters are treated 
universally and the modallty signifies the provability in PA. 

Let U be an extension of PA. We set 

QL(U)~{P[P is a predicate A-formula and 
Ut-fP for each realization f). 

The modal logic QL(U)  describes the principles of the 
provability Pr that can be demonstrated by means of the 
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theory U. 
Unlike the propositional case the logic QL(TA) that 

describes all true laws of provability in PA is not 
arithmetical ([Art85]) and tlhe logic QL(PA) that describes 
all PA-provable laws of provabllity is not enumerable 
([Var]). These results can be easily extended to the 
o-language: /~ oQL(TA) is not arithmetical ([Art88]) and 
~oQL(PA) is not enumerable (recent observation by P.Naumov). 

It seems very interesting to study what kind of 
provability semantics for the first order logic is provided 
via C~del translation L~, decoding oFffiF^AF (see Thesis (**)) 
and a provablllty interpretation of the predicate A-language. 
Let us put 

i ( U ) f p  o/,~ o Q L ( U ) .  

Lemma. i(PA)ffii(TA). 

P r o o f .  F o r  e a c h  f i r s t  o r d e r  f o r m u l a  P ,  L v ( P )  b e g i n s  w i t h  a 
m o d a l l t y  [] a n d  s o  i t  i s  ~ q u a l  t o  mQ f o r  s o m e  m - f o r m u l a  Q. An 
a r i t h m e t i c  f o r m u l a  f ( [ o Q l - )  t h u s  l o o k s  l i k e  R ^ P p [ R J  f o r  s o m e  
R. I f  R ^ P ~ [ R ]  i s  t r u e  t h e n  P A ~ R .  T h u s  PA~-Pr [R]  a n d  
PA P-R^Pr,[R].  

According to the provability interpretation, each first 
order formula can be considered as a predicate principle of 
"provability problems" where the G6del provability operator 
o(.) is interpreted as "C) is true and provable in 
arithmetic". The lemma shows that there exists a set of first 
order formulae which for every correct extension of the 
arithmetic U (i.e. U_~TA) coincides with the set of 
provability principles demonstrated by means of U. 

Thus we may define a Quantified Logic of the Provability 
Problems 

I~i(PA) (ffii(TA)ffii(U) for any U such that PA~_U~TA). 

The following theorem shows that the provability 
interpretation provides a correct semantics for HPC. 

Logicians often say that it is still unclear what system 
is to be accepted as the right one for Intuitionistic 
Predicate Logic. The provability interpretation may be 
considered as an attempt to give an independent definition 
for an intuitionis tic first order logic. As we have seen 
above, this approach gives the traditional intuitionistic 
system Int in the propositional case. 

T h e o r e m  9. H P C ~ I .  

P r o o f  i s  o b t a i n e d  b y  a r o u t i n e  t e s t i n g  o f  a x i o m s  a n d  r u l e s  o f  
HPC t o  h a v e  t r a n s l a t i o n s  c o r r e c t  in  a r i t h m e t i c .  
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Recently N.Pankrat'ev proved that IIPC~I. His result actually 
states that IIPC÷P_~I and HPC~P, where 

P--Vu3v((Q(u) --~,Q(v)) --~Q(u)) --~VuQ(u) 

and Q is a monadic predicate letter. D.Skvortsov and P.Naumov 
noticed that the Gabbay's formula 

G= , ,Vu(Q(u)v-~Q(u))  

also fits, l.e. HPC÷G~_I and HPC~.~O. Pankrat'ev has shown that 
HPC÷P~-G and HPC+G~P. These examples provide a kind of "lower 
bound" for the logic I. 

Theorem 9 and the Kripke completeness of HPC with 
respect to reflexive and transitive frames imply that each 
first order formula which is valid in all such Kripke models 
belongs to I. The following theorem shows however that the 
difference between I and IIPC can not be discerned by the 
finite Kripke models. 

Theorem IO. If a first order formula F fails in some finite 
Kripke model (reflexive, transitive) than F~I. 

Proof. A Kripke model for HPC (HPC-model) is a system 

~=(K,~,{Vi}i~K,~-) such that 

1. K is a nonempty set (called "the set of worlds"); 
2. ~ is a transitive and reflexive relation on K; we can 

even assume that ~ is a partial ordering on K; 
3. {Vi}iE K are nonempty sets (called "the domains") 

indexed by elements of K such that if i~j then Vi~_ Vj. 

4. N- is a (forcing) relation between worlds iEK and 
closed formulas with parameters in Vi: for each formula F 

I~-F and i~j ~ jt-F 

and ~ deals with connectives and quantifiers in a usual 
intuitionlstic way 

I~-P^Q ~-~ iN-P and iv-Q, 
iN-P~Q ~ i~-P o r iK-Q, 
ia-P-+O ~ for every j if i~j then jn-O or j~4P, 
IN,.±, 
l~-VxP(x) ~ for each j if i~j then for each a~Vj j~-P(a), 

l~-3xP(x) < > for some a~V I l~-P(a). 

A Kripke model for &-language (&-model) is a system 
S<=(K,~,{Vi}iEK, m-) such that ~ is a transitive and irreflexive 

relation on K and a forcing relation n- satisfies conditions 
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i~P-~Q iff il~P or i i-Q, 
ll--VxP(x) iff ll-.P(k) for all k~Vl, 

ii-AP iff for every j if l~j then JI-P. 
We say that a closed predicate formula Q is valid in the 
model ~=(K,~,{ViliEiC, l-) iff /I--Q for every i~.K. 

There is an obvious way to transform a HPC-model ~ into 
a &-model ~' just replacing ~ by -~, where l~j may be defined 
as "i~j but not j~i". The following natural lemma holds: 

Lemma. For every, first order sentence P, HPC-model ~ and i~K 

li-P (in a model ~) ~ l~'(trP) & (in a model ~'). 

Proof is a routine induction on the complexity of P. 

We call a model finite iff K and every Vi,i~IC , are finite. It 

is clear that a transformation of a finite llPC-model is a 
finite A-model. 

In order to complete the proof of Theorem 10 let us 
consider a main result of the paper [Art&Dzh] (a detailed 
proof is to appear in the Journal of Symbolic Logic in the 
paper "Finite Kripke models and predicate logics of 
provability"): 

If a closed predicate &-formula R is not valid in some 
predicate finite A-model then there exists a 
realization f such that PAi,,fR. 

Thus if F fails in a finite llPC-model ~ then we transform 
into a finite A-model ~C' w:here F also fails by the lemma. 
Therefore there exists a realization f such that 

PA~,f[(LrF)~I. Thls implies F~l. 
This theorem provides a kind of "upper bounds" for I. 

Let Or denote a Grzegorczyk's formula 

Vx(P(x),.,q) -..VxP(x),,,q 

where P is a monadic letter and q is a propositional one. We 
consider also the Markov Principle hip 

[Vx(PCx).,,,-~P(x))^ , 3xP(x)] --~3xPCx). 

It is well known that both of these formulae Or and ~ fail 
in corresponding finite HPC-models. 

C o r o l l a r y .  G r , M I ) ~ I .  

The main problem here: whether I is enumerable? 
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