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ABSTRACT

In 1932 A.N.Kolmogorov suggested an interpretation of
intuitionistic logic Int as a "ogic of problems”. Then
K.G5del in 1933 offered a “"provability” wunderstanding of

problems, thus, providing an abstract "provability”
interpretation for Int via a modal logic S4. Later papers by
J.C.C.McKinsey & A.Tarski, A.Grzegorczyk, R.Solovay,

A.V.Kuznetsov & A.Yu.Muravitskii, R.Goldblatt, G.Boolos imply
that this provability interpretation of Int is complete if
one decodes G&del modality o for an "abstract provability” in
the following way: 0OQ=QAPriQl, where PrIQl 1is the standard
provability predicate for Peano arithmetic. The paper shows
that the definition of nQ as QAPriQl is (in a certain sense)
the only possible one. The Uniform Completeness Theorem for
provability logics is extended to Int and other logics having
Godelian  provability interpretation. The first order logics
having provability interpretation are considered.

1 INTRODUCTION

A.N.Kolmogorov in [Koll suggested an informal interpretation
of sentences of intuitionistic logic Int as statements about
the possibility of solving certain general problems;
propositional variables were supposed to denote "problems”,
logical connectives were given a natural interpretation as
operators over "problems™ a formula A~B denotes a problem
"to solve both A and B", a formula AvB denotes "to solve
either A or B", an implication A —-B is interpreted as a
problem "to reduce a solution of B to any solution of A", -A
is A —>i that means a problem "to demonstrate an unsolvability
of A" Kolmogorov hadn't given a precise definition of
"problems”, Jjust appealing to the common sense of a working
mathematician but had conjectured that his interpretation of
Int was complete.

In [G5d] K.Gédel offered an iInterpretation of Int close
to that in [Kol], where intuitionistic propositions were
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treated as assertions about provability. More precisely, in
[G&d] there was defined a translation trd(F) of an
intuitionistic formula, F obtained by prefixing a new
operator o that stands for an abstract "provability” to each
subformula of F.

We call the 1logical language with the modality o the
o-language and a modal formula in o-language a oO-formula. In
[G5d] some properties of o were accepted as axioms and rules
of a modal logic S4. A possible axiom system for S4 includes

all the tautologies (in a propositional o-language),

aPAoCP —Q> —-0Q, oP —P,

oP —-ooP
for all sentences P,Q. The rules of inference of S4 are modus
ponens P,P -»Q+Q and necessitation P+oP.

We look at logics as sets of formulae and therefore for
each logic L and each formula F, LFF <« Fel.

Theorem 1.(K.Godel [G5d],J.C.C.McKinsey & A.Tarski [McK&TarD)
For each propositional formula F

FeInt « tr(FleS4. ¥

Later in [Grz] A.Grzegorczyk Iintroduced a new modal logic Grz
(a proper extension of S4):

Grz=S4+a(o(4A —-o04d) -4) - A
and showed that for Grz the property (*¥> was also valid.

Theorem 2. (A.Grzegorczyk [Grz]) For each propositional
o-formula F
Felnt &> tr(F)eGrz.

2 THE ARITHMETICAL PROVABILITY PREDICATE AS A MODALITY

In [G&d] K.G&del considered also another interpretation of a
modality as an arithmetical provability predicate Pr(x; we
denote this modal operator by A, A-language 1is the logical
language with A; a A-formula is a formula in A-language. A
complete axiomatization of A was given in [Sol]l where
R.Solovay introduced a decidable propositional A-logic S,
that describes all valid 1laws of provability 4, and Iits
sublogic GL, that stands for all laws of provability A, which
can be demonstrated by means of Peano Arithmetic PA.

The logic GL can be axiomatized by the axioms:

tautologies (in a A-language), APAACP Q) —AQ,

ACAP —P)> AP,
for all sentences P,Q and rules modus ponens, necessitation.

Logic S <can be defined as GL+AP —»P but without a
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necessitation rule.

A realization 1s a function that assigns to each
sentence 1letter a sentence of the language of PA. The
translation fA of a propositional A-formula A under a
realization £ 1is defined inductively: fi=1, fp=f(p> (for each
sentence letter p), fCA »B)=fA »fB, fAA=PrifAl. We have taken
the propositional constant 1 (falsity) to be among the
primitive logical symbols of PA; we understand PriFl as the
result of substituting the numeral for the G&del number of F
for the free variable x in Pr{x>, and therefore the
translation of any modal formula under any realization is a
sentence of the language of PA.

The <following theorem shows that the logic S 1is exactly
the collection of all valid principles of modal logic of
provability A and that the logic GL 1is the set of those
principles of this logic which are provable in PA,

Theorem 3. (R.Solovay [Sol]) For each A-formula Q
QeS &> fQ iIs true Iin the standard model of PA
for each realization £,
QeGL & for each realization £ PA£fQ.

The theorem implies also that
GL-Q S SHAQ.

Several papers independently give a uniform version of
the second part of the Solovay Completeness Theorem.

Theorem 4. (F.Montagna [Mon78], S.Artemov [Art79], A.Visser
[Vis81], G.Boolos [Boo82]) There exists a realization £
such that for each A-formula Q

Q&zGL «> PA£Q.

The first part of the Solovay Theorem does not admit
uniformization: for each realization £ for a propositional
variable p either fp or —fp is true in the standard model of
arithmetic, but neither p, nor -p belongs to the logic S.

In [Art79),[Art80],[Vis84]1,[Art86a]l] a general notion of
a logic of formal provability was developed. Let oltd> be a
r.e. formula that binumerates some axiom system of an
extension of PA (l.e. a theory 1in the language of PA
containing PA). Following [Fefl, we can call such a formula
alt> a numeration. We denote by |a| the set of axioms that is
numerically expressed by the formula o

|a|=<F|F is an arithmetic sentence and aCTF1> is trued

and by [a] the extension of PA determined by the set of
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axioms |a|. Let Pr (x> signify a standard arithmetical

formula of provability based on o as a formula for Godel
numbers of axioms ([Fef]). For each numeration o and each
realization £ we set fa(p)=:l.“p for each propositional letter

p. Let fo( commutes with the Boolean connectives and

fa(AQ )=Pra[faQ].

Let U be a theory and o a numeration. We define

La(U)=(Q|Q is a A~-formula and Ul—faQ for each realization oO,
The modal logics La(U) describe the laws of the provability
Pra that can be justified by means of the theory U.

We say that a logic 1 is logic of formal provability if
1=La<U) for some numeration o and extension of arithmetic U.

Obviously, GL is the 1least 1logic of formal provability.
the Solovay Theorem provides another example of such a logic:
S=L_C(TA> where Jol=PA and TA is the set of all true

arithmetic sentences.

There exists continually many logics of provability
[Art79], [Art80]. A (Classification Theorem for logics of
provability was accomplished by L.Beklemishev in [Bek].

3 A DEFINITION FOR THE MODALITY OF INTUITIVE PROVABILITY

In [KuzédMur77], [Goll, [Kuz&Mur86], [Boo80], [Art86b],
[Boo79] and other papers there was considered a translation
of oA as AxAA, that provides an arithmetical provability
interpretation of o-language, therefore, Int-language. It
turns out that logics Int and Grz are complete under this

interpretation. More precisely, let BA denote the decoding of
oP as PAAP in all subformulas oP of a formula B.
Theorem 5. 1.(A.Grzegorczyk [Grz]) For an Int-formula B
Int-B & Grzrtr(B>,
ii.(A.V.Kuznetsov & A.Yu.Muravitskii [Kuz&Mur771,861;
R.Goldblatt [Goll) For a o-formula B
Grz+B > GLI—-BA,

iii.(G.Boolos [B0o0801) For a a-formula B

Grz-B e So—BA.
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Are there any reasons for adopting the definition
aP:=P AP ? The modality o doesn't have an explicit
mathematical model; it had been introduced as a modality for
an intuitive notion of mathematical provability. On the
contrary the modality A has an exact mathematical definition
as an operator of formal provability Pr<> on the set of
arithmetical sentences. Thus there is no way to prove that
oP=PAAP; one can only hope to find some arguments in order to
declare a

Thesis: oP=PAAP CX¥x)

(like the Church Thesis for computable functions). Goédel
himself in [G5d]l tried the obvious idea to define ©oQ as AQ
but noticed that this definition led to a contradiction
between his axioms and rules for o and the already Kknown
Godel Second Incompleteness Theorem. Can one nevertheless
give a reasonable definition of o via A? The most optimistic
expectations are

to find a A-formula B{(p)> which satisfies known

properties of op (first of all axioms and rules of S4)

and such that for each other A-formula C<p> with these

properties

GL-BC(pD «+CCpd.

In this case we have the right to declare a definition
oQ:=BC(p> as a Thesis. It turns out that this situation holds
with pAAp as B<p>. The main ideas of the proof of the
following theorem were taken from [Kuz&Mur86].

Theorem 6. For a given A-formula C<p> If
1. all axloms and rules of S4 for CCp)> as op are
arithmetically valid (derivable In S) and
2.GL-C(p> —»Ap (this principle says that any "real”
mat hemat ical proof can be finitely transformed Into a
formal proof)
then
GL-CC(p> —~{(pAApPD,

Proof. Let T denotes the propositional constant "truth" so
Telnt.,S4,6rz,6L,S. Obviously, S4+or and by the conditions of
Theorem 6

1) S+CCTd,

2) SCCC<pI —»p> (because S4+olop —p?),

3) for each A-formula F that contains modality symbols
only in combinations of a type C<CD

SFF =3 SHCCF),

(because of the necessitation rule for S4: S4rQ = S4+0Q),



262

Session 7

4) GL-CCp> —»Ap (condition 2. of the theorem).
We will show that
GLHCCP) —+{(pA AP

and thus this formula is deducible in all 1logics of formal
provability. According to 2)

S-CCCCpI —p),
thus (GL<S, condition 2. of the theorem)

GL-ACCCp) —pD
and

GL-CCp) —p.

Together with 4) this gives

GL-CC(p> —pAAp.
Lemma. For each A-formula D<(p)

GLHC(PAAP) = (D{pd> «-DLTID.

The proof is an induction on the complexity of D. The basis
step and induction steps for Boolean connectives are trivial.
Let D<(p> be AECp). By the induction hypothesis

GLC(pAAP) —+CECP)Y «-+ECTI).

The necessitation rule for GL and the commutativity of A with

— and A give
GLHCAPAAAD) —CAEC(PY «AECT ),

Together with GL+-Ap —AAp this implies
GLI(pAAPDY - CD<Cp> «-+DCTID.

By 2) SHCCr> and according to 3),4), SrCCCCTI), SHACPD
and GL+C<p)>. Because of the lemma we have

GL-C(pAAp)Y> —»C(p>, whence GL-CC(pD «+C(pAApP).

Remark. Without condition 2. of the theorem we 1lose the
uniqueness of the definition (**>: C(pd>=p also fits.

Below we assume the Thesis <**>, Theorems 3 and 5 may
now be considered as an affirmation of Kolmogorov's
conjecture on the Completeness of Int with respect to his
problem’s semantics where one understands a problem as a
problem to prove and a provabllity operator ol.) as CIAACD.

Since the Thesis provides a provability interpretation
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for the Int-language we can extend the notion of provability
logics to this language. We use the notation £Int for the
lattice of all logics containing Int, £Grz for the lattice of
all extensions of Grz, and X£GL for the lattice of extensions
of GL.

Let us consider a mapping p ([Mak&Rybl) from £Grz to
£Int which is determined by the Gédel translation ¢tr: {for
each logic m from £Grz we put

p<md=(F|F is an Int-formula and m-tr<(F>J).

We can also consider a mapping u ([KuzidMur86]) from £GL
to £G6rz: for each logic mefGL, we set

H<md>=KF |F is a o-formula and Illl—FA}.

We say that a logic 1 in an Int-language has a
provability Interpretation iff there exists a numeration «
and an extension of the arithmetic U such that

I=poyu °La(U)'

In this situation the logic 1 describes those 1laws of the
provability Prd that can be expressed on the Int-language and

justified by means of the theory U.

By Theorems 3 and 5 the logic Int has a provability
interpretation and Int is the least such logic in this
language. There are continually many logics extending Int |in
the 1language of Int. Which of them have a provability
interpretation?

The following theorem provides a Classification of all

logics in Int-language that have a provability
interpretation. We denote by LPn,nSoo, a logic Int+0n, where
Qp=tr Qnt1®Pn1¥Ppig %2

and LPw=Int. Obviously

LPODLP 1:)... LPw=Int

In fact LPn, new, are the smallest 1logics in finite slices S

by Hosoi-Ono and each of these logics is decidable. We note

that l..l’0 is inconsistent, LP1 is the classical logic and the

logics LPn’ n>1, have properties close to those of the
classical one.
Theorem 7. ([Art86bl) Among logics in the language of Int

only
LP o,LP 1,...l..l’w=lnt

have a provability Interpretation.
This theorem shows that classical propositional logic Cl
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also has a provability interpretation.
Corollary. The logic
l=poyoLa(U).
1s classical Iff

UPA+F ~—»Pra[Fl|F 1s an arithmetical sentence)

Thus, the classical logic C1 corresponds to those
theories in which the completeness principle "all statements
that are true are provable” for PA is derivable. This
consideration shows a reasonable correspondence of formal
results with intuition in classical propositional logic.

4 UNIFORMIZATION THEOREM

The following theorem extends the Uniform Arithmetical
Completeness for GL (Theorem 4) to simultaneous
uniformization for GL,S,Grz,Int and all LPn,neoo. For

simplicity we assume below that Ja=PA and thus Prdx>
signifies a standard provability formula for PA. In [Art79],
[Art80] it was pointed out that the logic S is arithmetically
complete with respect to an extension of PA by the Local
Reflection Principle:

PA’=PA +{Prigl —¢ |¢e.=_StP A}’

Moreover if SHQO then one can choose a realization £ for which
PA’sfQ and erZz.

A provability interpretation of logics LPn,m—:-m, assigns
to each of these logics a theory PA+P1~“[J_], i.e.
n,
LPn-pouolLa(PA-t-Pr- 11>,

Here Pro[¢l=¢, Prn+1[¢l=Pr[Prn[F]l.
Theorem 8. There exists a realization £ such that
for each A-formula B

GL+B g PA-fB and S+B > PA’-fB,

for each o-formula B
GrzrB > PArf<B®,
for each Int-formula B
IntrB  «  PAFLr(B™,
LP B & PA+Pr LU-£<Itr (B,

Proof. We prove a unformization theorem for the logic S (first
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and then show that this uniform realization also (fits for all
other logics mentioned in the Theorem.

Lemma. There exists a realization £ such that for each
A-formula B
S+B = PA’-fB.

Proof |is based on an improved version of Montagna's method
trom [Mon78)]. For a A-formula R(po,...,pn) and any arithmetic
formulae Bo,...,Bn let R(Bo,...,Bn) denote R with a

realization £ such that fpi=Bi’

Let HIx,y,z,] mean that the following 3 conditions hold:

1. x is the G5del number of an arithmetical formula B<(tD
with one free variable, say;

2. y 1is the G&del number of a A-formula Q(po,...,pn),

i=0,...,11.

which is not a theorem of S;

3. =z is the G&del number of a proof of QCBCO),... ,BCn)
in PA> and non of natural v<z is the G&del number of a proof
in PA’ of any R(B{O,...,B(k>> with some R&S.

Obviously Hix,y,zl is recursive. Let HOq,y,z> is its
representation in PA. Usual properties of such
representations give that if HIx,y,=z,]1 then

PARYx,y CHC(K ,X,Y,) «esXxX=may=n).

Consider a recursive procedure which for any A-formula R not
deducible in S constructs a realization g such that TngR.
For such R and g let pl: denote an arithmetical formula epP; -

Let us also define a recursive function F{x,y> as follows:
if x is a number of some formula R(po,...,pn) not

deducible in S and y<n, then F(x,y)=rpl;1; in all other

cases F{x,y>=0.
Let also the formula G<x,y,z> represent a function Fd{x,y> in
PA. Then F{mud=k implies

PAFVZ(G(m,n,z)+z=k).
Let UdCx,y> denote the arithmetical formula

Vz,v(H(x,v,z)*Vw(G(v,y,w)—»Trs(w))),

where Trzcx) is a standard formula defining truth for all

Zg—sentences of arithmetic, i.e.
PALE «Tr_( rel>
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for each Eezg. By the fixed-point lemma for PA one can get an

arithmetic formula BCy> such that

PA-BCy) Vv, zCHCTB v ,z)-.Vw(G(v,y,w)-.Trzcw)».

We can show now that BCO>,BC(1),.. 1is a desired Uniform
realization for S and PA’.

Suppose now that for some A-formula Q<p,...,p>, SpQ and
PA’FQCBC(N),...,B(n)»>. Let k be the 1least number which is a
number of some derivation in PA’ of an arithmetical formula
RCBCO),...,B(mD>> such that IL.R. Then HIMBI1,MRT1, kI holds,
therefore

PArVv,ZzCHCTB ,v,2) v=TRTAz=k).

Thus for each i, O0<i<m,

PAFB(I) Vv, zCv= TR . z=sk+VYw(GC(V A ,WI-Tr, (WD),

Therefore

PA-B(i) «+Vw(G( MR A,WI-Tr, (W,

As F(IR1,id= rp'it" we get
R

PAFVYWCOC TR i, w) vw= l'pi 1),
Thus
PARBAID -Tr_C Fp':1 >
and
. R
PAFHBCi) «~p i
So
R R
PA-R(B(0),...,BEmMY> R e, >
and
R R
S+R<(p o ,...,pm).
R

This contradicts the definition of P;-
The Lemma is thus proved.

Let £ be a uniform realization for S and PA’>, We can
show that £ is a uniform realization for GL and PA. As we
have already noticed S+AQ implies GL-Q. Thus PAfQ implies
PA-PrifQl and so PA’-PrifQl i.e. PA‘fCAQ)>. The realization f
is uniform for S and PA’ and so SiAQ; Therefore GLHQ.

The realization £ 1Is obviously uniform for Grz and PA:
as we already noticed above Grz=uCGL)>. Thus

Grz-B ¢ GLI—BA e a PAl—f(BA).

Let us show now that £ is also a uniform realization for
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logics GL+A™ L (without necessitation) and theories PA+Pr"Lil.
Here

A%FaF, A™MFaaslF.
So PA+Pr'Mi-fQ gives PArPr' 111 —fQ and PAFf<CA™L —Q>. The
realization £ is wuniform for GL and PA. Thus GLI—An..L—-vQ and

GL+A™11-Q.
According to [Art86b] and [Art838]

Lpn-popcalms"u

and thus £ is a uniform realization for LPn and PA+PP“[J.]:

A

LPn}—B e GL+A"iHtr<Bd>] e PA+Pr LLf ([tr(B)lA).

Theorem 8 is thus proved.

5 PROVABILITY INTERPRETATION OF THE PREDICATE LANGUAGE

The Godel translation tr can be easily extended to the (first
order language: for each predicate formula F let tr{(F)> be a
result of prefixing an operator o to each subformula of F.

The notion of an arithmetical realization of A-language
has also a natural extension to the predicate 1language
(IMon84],[Art85], [Var]). We assume that the predicate
A~language does not contain equality and function symbols. By
a realization we mean now a mapping f that associates with
every predicate formula an arithmetic formula with the same
free variables and that commutes with the operation of
substitution tor free variables and with the Boolean
connectives and the quantifiers- In addition, let

fAR(x 17 ,xn)=Pr[f R{x 1 ,xn)l.

Here, for any formula F of PA, PrIFl is the formula of PA
with the same {free variables as F that expresses the
PA-provability of the result of substituting for each
variable free in F the numeral for the value of that
variable. For the details of the construction of PriFl, the
reader may consult [Boo79], p.42.

Thus each predicate A-formula can be thought of as a
"provability 1law”, where the predicate letters are treated
universally and the modality signifies the provability in PA,

Let U be an extension of PA. We set

QL(U)={P|P is a predicate A-formula and
U~fP for each realization £,

The modal 1logic OQLCU> describes the principles of the
provability Pr that can be demonstrated by means of the
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theory U.

Unlike the propositional case the logic QLCTAY> that
describes all true laws of provability in PA s not
arithmetical ([Art851) and the 1logic QLCPA> that describes
all PA-provable laws of provability is not enumerable
(LVarl). These results can be easily extended to the
o~-language: HeQLCTAD> is not arithmetical ([Art88D1D and
HeQLCPAY> is not enumerable (recent observation by P.Naumov).

It seems very Iinteresting to study what kind of
provability semantics for the first order logic is provided
via Godel translation tr, decoding oF=FAAF (see Thesis C¥*))
and a provability interpretation of the predicate A-language.
Let us put

iCUd=po i QLUD,

Lemma. i(PAX=i(TA).

Proof. For each first order formula P, trd(P> begins with a
modality o and so it is gqual to oQ for some o-formula Q. An
arithmetic formula fdoQl™> thus looks like RAPrIR] for some
R. If RAPriRl is true then PArR. Thus PAPriR] and
PA-RAPrIR]1,

According to the provability interpretation, each first
order formula can be considered as a predicate principle of
"provability problems” where the G&del provability operator
0<.) is interpreted as ") is true and provable in
arithmetic". The lemma shows that there exists a set of first
order formulae which for every correct extension of the
arithmetic u (i.e. U<TA) coincides with the set of
provability principles demonstrated by means of U.

Thus we may define a Quantified Logic of the Provability
Problems

I:=iC(PA)> (=i(TAX=i<U> for any U such that PASUZTA).

The following theorem shows that the provability
interpretation provides a correct semantics for HPC.

Logicians often say that it is still unclear what system
is to be accepted as the right one for Intuftionistic
Predicate Logic. The provability interpretation may be
considered as an attempt to give an independent definition
for an intuitionistic first order 1logic. As we have seen
above, this approach gives the traditional intuitionistic
system Int in the propositional case.

Theorem 9. HPC<I,

Proof is obtained by a routine testing of axioms and rules of
HPC to have translations correct in arithmetic.
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Recently N.Pankrat'ev proved that HPCxI, His result actually
states that HPC+P<I and HPCy¥, where

=VuIvCQCud -»QCvId - QCud) - VYuQdud

and Q is a monadic predicate letter. D.Skvortsov and P.Naumov
noticed that the Gabbay's formula

G=—VuCQ(ud—QCud»

also fits, l.e. HPC+GSI and HPCyG. Pankrat'ev has shown that
HPC+P+-G and HPC+G,P. These examples provide a kind of "lower
bound” for the logic L.

Theorem 9 and the Kripke completeness of HPC with
respect to reflexive and transitive frames imply that each
first order formula which is valid in all such Kripke models
belongs to I. The following theorem shows however that the
difference between I and HPC can not be discerned by the
finite Kripke models.

Theorem 10. If a first order formula F falls In some finite
Kripke model (reflexive, transitive) than F&l.

Proof. A Kripke model for HPC (MHPC-model) is a system
9’<=(K,<,{VI}I€K,|!—) such that

1. K is a nonempty set (called "the set of worlds");

2.  is a transitive and reflexive relation on K; we can
even assume that < is a partial ordering on K;

3. [VI}IGK are nonempty sets (called T"the domains")
indexed by elements of K such that it i</ then VIS Vj‘

4. + is a (forcing) relation between worlds ieK and
closed formulas with parameters in VI: for each formula F

F and I<J = JF

and + deals with connectives and quantifiers in a wusual
intuitionistic way
FPAQ <& P and IQ,
WPVQ <& P or iQ,
P +Q & for every J if I{J then /#Q or JjwP,
=L,
IFVYXP{x) & for each J if i{/J then for each aeV
I-3AxP(x) & for some aeV! FPCad,
A Kripke model for A-language (A-model) is a system
9<=(K,<,{VI}I.€K,|+-) such that < is a transitive and irreflexive

relation on K and a forcing relation - satisfies conditions
Iy,

J JPLad,
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P —Q iff ivP or 1 +Q,
FVxP<(x> iff W-PCk> for all kel’!,

I-AP iff for every J if i<{J then AP,
We say that a closed predicate formula € is valid in the
model 9'<=(K,<,{VI}IGK,|-) iff i@ for every IeK.

There is an obvious way to transform a HPC-model X into
a A-model X' just replacing < by <, where i</ may be defined
as "i{J but not J<i". The following natural lemma holds:

Lemma. For every.fIrst order sentence P, HPC-model % and IeK
VP (In a model X) <= Il—'(tPP)A (in a model X').

Proof is a routine induction on the complexity of P.

We call a model finite iff K and every VI.,IeK, are finite. It

is clear that a transformation of a finite HPC-model is a
finite A-model.

In order to complete the proof of Theorem 10 let us
consider a main result of the paper [Art&Dzh] (a detailed
proof is to appear in the Journal of Symbolic Logic in the
paper "Finite Kripke models and predicate logics of
provability”):

If a closed predicate A-formula R is nolt valid In some
predicate finite A-model then there exists a
realization £ such that PArfR.

Thus if F fails in a finite HPC-model % then we transform «
into a finite A-model %' where F also fails by the Ilemma.
Therefore there exists a realization f such that

PALFICtrFY>21. This implies Fel.
This theorem provides a kind of "upper bounds” for 1.
Let Gr denote a Grzegorczyk's formula
Yx(P{(x)vqd -»VxP{xd>vq

where P is a monadic letter and q is a propositional one. We
consider also the Markov Principle MP

IV (P X IAPCXIIAIXP(xD] TP (XD,

It is well known that both of these formulae Gr and MP fail
in corresponding finite HPC-models.

Corollary. Gr MPeI,

The main problem here: whether I is enumerable?
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